Quantitative Bioluminescence Tomography-Guided Conformal Irradiation for Preclinical Radiation Research.

Int J Radiat Oncol Biol Phys

Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, Maryland; Biomedical Imaging and Radiation Technology Laboratory, Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas. Electronic address:

Published: December 2021

AI Article Synopsis

  • The study developed a high-contrast quantitative bioluminescence tomography (QBLT) system to improve target localization in radiation therapy, addressing limitations of conventional cone beam computed tomography (CBCT) that struggles with soft tissue imaging.
  • QBLT utilizes advanced imaging techniques to accurately quantify bioluminescence signals in vivo, significantly enhancing radiation treatment planning for brain tumors like glioblastoma.
  • Results showed QBLT could localize tumors with an accuracy of within 1 mm, improving tumor coverage from 75% to 97.9% and effectively delivering the prescribed radiation dose while minimizing damage to surrounding healthy tissue.

Article Abstract

Purpose: Widely used cone beam computed tomography (CBCT)-guided irradiators in preclinical radiation research are limited to localize soft tissue target because of low imaging contrast. Knowledge of target volume is a fundamental need for radiation therapy (RT). Without such information to guide radiation, normal tissue can be overirradiated, introducing experimental uncertainties. This led us to develop high-contrast quantitative bioluminescence tomography (QBLT) for guidance. The use of a 3-dimensional bioluminescence signal, related to cell viability, for preclinical radiation research is one step toward biology-guided RT.

Methods And Materials: Our QBLT system enables multiprojection and multispectral bioluminescence imaging to maximize input data for the tomographic reconstruction. Accurate quantification of spectrum and dynamic change of in vivo signal were also accounted for the QBLT. A spectral-derivative method was implemented to eliminate the modeling of the light propagation from animal surface to detector. We demonstrated the QBLT capability of guiding conformal RT using a bioluminescent glioblastoma (GBM) model in vivo. A threshold was determined to delineate QBLT reconstructed gross target volume (GTV), which provides the best overlap between the GTV and CBCT contrast labeled GBM (GTV), used as the ground truth for GBM volume. To account for the uncertainty of GTV in target positioning and volume delineation, a margin was determined and added to the GTV to form a QBLT planning target volume (PTV) for guidance.

Results: The QBLT can reconstruct in vivo GBM with localization accuracy within 1 mm. A 0.5-mm margin was determined and added to GTV to form PTV, largely improving tumor coverage from 75.0% (0 mm margin) to 97.9% in average, while minimizing normal tissue toxicity. With the goal of prescribed dose 5 Gy covering 95% of PTV, QBLT-guided 7-field conformal RT can effectively irradiate 99.4 ± 1.0% of GTV.

Conclusions: The QBLT provides a unique opportunity for investigators to use biologic information for target delineation, guiding conformal irradiation, and reducing normal tissue involvement, which is expected to increase reproducibility of scientific discovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8602741PMC
http://dx.doi.org/10.1016/j.ijrobp.2021.08.010DOI Listing

Publication Analysis

Top Keywords

preclinical radiation
12
target volume
12
normal tissue
12
quantitative bioluminescence
8
conformal irradiation
8
qblt
8
guiding conformal
8
margin determined
8
determined gtv
8
gtv form
8

Similar Publications

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

Deep-tissue solid cancer treatment has a poor prognosis, resulting in a very low 5-year patient survival rate. The primary challenges facing solid tumor therapies are accessibility, incomplete surgical removal of tumor tissue, the resistance of the hypoxic and heterogeneous tumor microenvironment to chemotherapy and radiation, and suffering caused by off-target toxicities. Here, sonodynamic therapy (SDT) is an evolving therapeutic approach that uses low-intensity ultrasound to target deep-tissue solid tumors.

View Article and Find Full Text PDF

Clinical validation of a prognostic preclinical magnetic resonance imaging biomarker for radiotherapy outcome in head-and-neck cancer.

Radiother Oncol

December 2024

Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Cluster of Excellence "Machine Learning", University of Tübingen, Tübingen, Germany. Electronic address:

Purpose: To retrain a model based on a previously identified prognostic imaging biomarker using apparent diffusion coefficient (ADC) values from diffusion-weighted magnetic resonance imaging (DW-MRI) in a preclinical setting and validate the model using clinical DW-MRI data of patients with locally advanced head-and-neck cancer (HNC) acquired before radiochemotherapy.

Material And Methods: A total of 31 HNC patients underwent T2-weighted and DW-MRI using 3 T MRI before radiochemotherapy (35x2Gy). Gross tumor volumes (GTV) were delineated based on T2-weighted and b500 images.

View Article and Find Full Text PDF

The compact line-focus X-ray tube for microbeam radiation therapy - Focal spot characterisation and collimator design.

Phys Med

December 2024

Department of Radiation Oncology, TUM School of Medicine and Health and Klinikum rechts der Isar, TUM University Hospital, Technical University of Munich (TUM), Munich, Germany; Institute of Radiation Medicine, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuherberg, Germany; Forschungs-Neutronenquelle Heinz Maier-Leibnitz Zentrum (FRM II), Technical University of Munich (TUM), Garching, Germany.

Purpose: Microbeam radiation therapy (MRT) has shown superior healthy tissue sparing at equal tumour control probabilities compared to conventional radiation therapy in many preclinical studies. The limitation to preclinical research arises from a lack of suitable radiation sources for clinical application of MRT due to high demands on beam quality. To overcome these limitations, we developed and built the first prototype of a line-focus X-ray tube (LFXT).

View Article and Find Full Text PDF

Purpose: Nanoparticles are highly efficient vectors for ferrying contrast agents across cell membranes, enabling ultra-sensitive in vivo tracking of single cells with positron emission tomography (PET). However, this approach must be fully characterized and understood before it can be reliably implemented for routine applications.

Methods: We developed a Langmuir adsorption model that accurately describes the process of labeling mesoporous silica nanoparticles (MSNP) with Ga.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!