New Findings: What is the central question of this study? The passive leg movement (PLM) assessment of vascular function utilizes the blood flow response in the common femoral artery (CFA): what is the impact of baseline CFA blood flow on the PLM response? What is the main finding and its importance? Although an attenuated PLM response is not an obligatory consequence of increased baseline CFA blood flow, increased blood flow through the deep femoral artery will diminish the response. Care should be taken to ensure that a genuine baseline leg blood flow is obtained prior to performing a PLM vascular function assessment.

Abstract: The passive leg movement (PLM) assessment of vascular function utilizes the blood flow response in the common femoral artery (CFA). This response is primarily driven by vasodilation of the microvasculature downstream from the deep (DFA) and, to a lesser extent, the superficial (SFA) femoral artery, which facilitate blood flow to the upper and lower leg, respectively. However, the impact of baseline CFA blood flow on the PLM response is unknown. Therefore, to manipulate baseline CFA blood flow, PLM was performed with and without upper and lower leg cutaneous heating in 10 healthy subjects, with blood flow (ultrasound Doppler) and blood pressure (finometer) assessed. Baseline blood flow was significantly increased in the CFA (∼97%), DFA (∼109%) and SFA (∼78%) by upper leg heating. This increase in baseline CFA blood flow significantly attenuated the PLM-induced total blood flow in the DFA (∼62%), which was reflected by a significant fall in blood flow in the CFA (∼49%), but not in the SFA. Conversely, lower leg heating increased blood flow in the CFA (∼68%) and SFA (∼160%), but not in the DFA. Interestingly, this increase in baseline CFA blood flow only significantly attenuated the PLM-induced total blood flow in the SFA (∼60%), and not in the CFA or DFA. Thus, although an attenuated PLM response is not an obligatory consequence of an increase in baseline CFA blood flow, an increase in baseline blood flow through the DFA will diminish the PLM response. Therefore, care should be taken to ensure that a genuine baseline leg blood flow is obtained prior to performance of a PLM vascular function assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1113/EP089818DOI Listing

Publication Analysis

Top Keywords

blood flow
84
baseline cfa
28
cfa blood
28
blood
22
flow
21
vascular function
20
femoral artery
16
plm response
16
increase baseline
16
cfa
13

Similar Publications

Fluid administration is widely used to treat hypotension in patients undergoing veno-venous extracorporeal membrane oxygenation (VV-ECMO). However, excessive fluid administration may lead to fluid overload can aggravate acute respiratory distress syndrome (ARDS) and increase patient mortality, predicting fluid responsiveness is of great significance for VV-ECMO patients. This prospective single-center study was conducted in a medical intensive care unit (ICU) and finally included 51 VV-ECMO patients with ARDS in the prone position (PP).

View Article and Find Full Text PDF

Turning attention to tumor-host interface and focus on the peritumoral heterogeneity of glioblastoma.

Nat Commun

December 2024

Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital,Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang, China.

Approximately 90% of glioblastoma recurrences occur in the peritumoral brain zone (PBZ), while the spatial heterogeneity of the PBZ is not well studied. In this study, two PBZ tissues and one tumor tissue sample are obtained from each patient via preoperative imaging. We assess the microenvironment and the characteristics of infiltrating immune/tumor cells using various techniques.

View Article and Find Full Text PDF

Neuromorphic-enabled video-activated cell sorting.

Nat Commun

December 2024

State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, China.

Imaging flow cytometry allows image-activated cell sorting (IACS) with enhanced feature dimensions in cellular morphology, structure, and composition. However, existing IACS frameworks suffer from the challenges of 3D information loss and processing latency dilemma in real-time sorting operation. Herein, we establish a neuromorphic-enabled video-activated cell sorter (NEVACS) framework, designed to achieve high-dimensional spatiotemporal characterization content alongside high-throughput sorting of particles in wide field of view.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Impact of blood flow restriction intensity on pain perception and muscle recovery post-eccentric exercise.

Clin Physiol Funct Imaging

January 2025

Faculty of Health Sciences, Division of Physiotherapy and Rehabilitation, Istanbul Okan University, Istanbul, Turkey.

Background: Delayed onset muscle soreness (DOMS) is a well-established phenomenon characterized by ultrastructural muscle damage that typically develops following unfamiliar or high-intensity exercise. DOMS manifests with a constellation of symptoms, including muscle tenderness, stiffness, edema, mechanical hyperalgesia, and a reduced range of joint motion. In recent years, the application of blood flow restriction (BFR) has garnered attention for its potential impact on DOMS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!