A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Anticancer Effect of ERM210 on Liver Cancer Cells Through ROS/Mitochondria-dependent Apoptosis Signaling Pathways. | LitMetric

Background/aim: Asian Traditional medicines are renowned for their antitumor properties and are efficacious in the clinical treatment of various cancer types. ERM210 is a Korean traditional medicine comprising nine types of medicinal plants. In the present study, we examined the pro-apoptotic effect and molecular mechanisms of the effects of ERM210 on HepG2 liver cancer cells.

Materials And Methods: The cytotoxicity of ERM210 on HepG2 cells was investigated using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and wound-healing assays, and apoptosis and signaling pathways by fluorescence microscopy flow cytometry and western blotting.

Results: ERM210 significantly impaired HepG2 cell viability and enhanced mitochondria-dependent cellular apoptosis in a time- and dose-dependent manner by up-regulating the expression of caspases 3, 7 and 9, and of BCL2 apoptosis regulator (BCL2)-associated X, apoptosis regulator (BAX) proteins, whilst down-regulating that of BCL2 protein. Furthermore, ERM210 treatment increased accumulation of cellular and mitochondrial reactive oxygen species (ROS) and significantly inhibited cell migration. Additionally, all these phenomena were reversed by treating with the ROS scavenger N-acetylcysteine. The analysis of signaling proteins revealed that ERM210 significantly up-regulated the phosphorylation of ROS-dependent mitogen-activated protein kinases (p38, extracellular-regulated kinase, and c-Jun N-terminal kinase in HepG2 liver cancer cells.

Conclusion: ERM210 exerts anticancer effects in HepG2 liver cancer cells by up-regulating ROS/mitochondria-dependent apoptosis signaling, providing new insight into the possibility of employing this traditional medicine for the clinical treatment of liver cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8408685PMC
http://dx.doi.org/10.21873/invivo.12542DOI Listing

Publication Analysis

Top Keywords

liver cancer
20
apoptosis signaling
12
hepg2 liver
12
cancer cells
8
ros/mitochondria-dependent apoptosis
8
signaling pathways
8
clinical treatment
8
traditional medicine
8
erm210 hepg2
8
apoptosis regulator
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!