This study aimed to assess the impact of individual as well as combined application of and in phytoremediation potential of grown in soil contaminated by industrial effluents. In response to five metals; copper, chromium, nickel, lead, and cadmium, results revealed that germination percentage, fresh and dry weights, and photosynthetic pigments of decreased under contaminated soil. On the other hand, electrolyte leakage due to cellular injury, metabolites (proline and glycine betaine), antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase), accumulation of hydrogen peroxide and metals in plant's roots, shoots and leaves increased. Inoculation significantly reduced these effects as proved by the enhancement of germination percentage, fresh and dry biomass, and photosynthetic pigments. Simultaneously, the antioxidant enzymes, metabolites contents (proline and glycine betaine) and metal concentrations in plant's roots, shoots and leaves decreased. Combined application of both strains was found more effective as compared to individual inoculation. It was concluded that metal resistant species in combination had growth effects on and enhanced its phytoremediation efficiency in contaminated soil.; a hyper-accumulator of metals, loses phytoremediation potential with the passage of growth. Two species ( and ) having known bioremediation abilities were employed individually as well as in combination under metals contaminated soil to increase phytoremediation efficiency of . The metals containing soil used is a unique aspect in this study because selected soil, contaminated by industrial effluents, has not been evaluated or reported earlier. Combined application of improved phytoremediation potential of more as compared to application of individual strain which is yet another unique aspect of this investigation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15226514.2021.1962797 | DOI Listing |
Int J Med Inform
January 2025
Department of Computer Science and Artificial Intelligence, University of Udine, 33100, Italy.
Background: Segmentation models for clinical data experience severe performance degradation when trained on a single client from one domain and distributed to other clients from different domain. Federated Learning (FL) provides a solution by enabling multi-party collaborative learning without compromising the confidentiality of clients' private data.
Methods: In this paper, we propose a cross-domain FL method for Weakly Supervised Semantic Segmentation (FL-W3S) of white blood cells in microscopic images.
Nanotechnology
January 2025
School of Instrumentation Science and Opto-electronics Engineering, Beijing Information Science and Technology University, 12 Qinghe Xiaoying East Road, Xisanqi Street, Haidian District, Beijing, Beijing, 100192, CHINA.
Lead-free cesium bismuth iodide (CsBiI) perovskite exhibits extraordinary optoelectronic properties and attractive potential in various optoelectronic devices, especially the application for photodetectors. However, most CsBiIphotodetectors demonstrated poor detection performance due to the difficulty in obtaining high-quality polycrystalline films. Therefore, it makes sense to modulate the preparation of high-quality CsBiIpolycrystalline films and expand its applications.
View Article and Find Full Text PDFChem Biodivers
January 2025
Universidad Nacional del Litoral Facultad de Bioquimica y Ciencias Biologicas, Química Orgánica, Ciudad Universitaria. Paraje el Pozo S/N, Argentina, 3000, Santa Fe, ARGENTINA.
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has highlighted the urgent need for novel therapeutic agents targeting viral enzymes such as the main protease (Mpro), which plays a crucial role in viral replication. In this study, we investigate the inhibitory potential of 23 peptides isolated from the skin of amphibians belonging to the Hylidae and Leptodactylidae families against SARS-CoV-2 Mpro. Five peptides demonstrated significant inhibition using a colorimetric Mpro inhibition assay, with IC50 values ranging from 41 to 203 µM.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
Metal nanoclusters (NCs), owing to their atomic precision and unique molecule-like properties, have gained widespread attention for applications ranging from catalysis to bioimaging. In recent years, proteins, with their hierarchical structures and diverse functionalities, have emerged as good candidates for functionalizing metal NCs, rendering metal NC-protein conjugates with combined and even synergistically enhanced properties featured by both components. In this Perspective, we explore key questions regarding why proteins serve as complementary partners for metal NCs, the methodologies available for conjugating proteins with metal NCs, and the characterization techniques necessary to elucidate the structures and interactions within this emerging bionano system.
View Article and Find Full Text PDFSci Adv
January 2025
School of Materials Science & Chemical Engineering, Ministry of Education Key Laboratory of Impact and Safety Engineering, Ningbo University, Ningbo 315211, China.
Self-healing hydrogels can autonomously repair damage, enhancing their performance stability and broadening their applications as soft devices. Although the incorporation of dynamic interactions enhances self-healing capabilities, it simultaneously weakens the hydrogels' strength. External stimuli such as heating, while accelerating the healing process, may also lead to dehydration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!