Environmental mutagens are chemical and physical substances in the environment that has a potential to induce a wide range of mutations and generate multiple physiological, biochemical, and genetic modifications in humans. Most mutagens are having genotoxic effects on the following generation through germ cells. The influence of germinal mutations on health will be determined by their frequency, nature, and the mechanisms that keep a specific mutation in the population. Early prenatal lethal mutations have less public health consequences than genetic illnesses linked with long-term medical and social difficulties. Physical and chemical mutagens are common mutagens found in the environment. These two environmental mutagens have been associated with multiple neurological disorders and carcinogenesis in humans. Thus in this study, we aim to unravel the molecular mechanism of physical mutagens (UV rays, X-rays, gamma rays), chemical mutagens (dimethyl sulfate (DMS), bisphenol A (BPA), polycyclic aromatic hydrocarbons (PAHs), 5-chlorocytosine (5ClC)), and several heavy metals (Ar, Pb, Al, Hg, Cd, Cr) implicated in DNA damage, carcinogenesis, chromosomal abnormalities, and oxidative stress which leads to multiple disorders and impacting human health. Biological tests for mutagen detection are crucial; therefore, we also discuss several approaches (Ames test and Mutatox test) to estimate mutagenic factors in the environment. The potential risks of environmental mutagens impacting humans require a deeper basic knowledge of human genetics as well as ongoing research on humans, animals, and their tissues and fluids.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-15442-9DOI Listing

Publication Analysis

Top Keywords

environmental mutagens
12
molecular mechanism
8
mutagenic factors
8
impacting human
8
human health
8
mutagens
8
environment potential
8
chemical mutagens
8
unravelling molecular
4
mechanism mutagenic
4

Similar Publications

Local control of S atoms on the Co-SACs for effective activation of PMS and degradation imidacloprid: Mechanism insights and toxicity evaluation.

Ecotoxicol Environ Saf

January 2025

School of Eco-Environment, Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, Hebei University, Baoding 071002, China. Electronic address:

Imidacloprid (IMI), as an emerging pollutant, is frequently detected in pesticide wastewater. Cobalt-based single-atom catalysts (Co-SACs) doped with sulfur atoms can serve as an efficient strategy to activate peroxymonosulfate (PMS) and degrade organic pollutants. The paper employed density functional theory and computational toxicology to deeply explore the mechanism and ecotoxicity of IMI when S atoms were introduced into Co-SACs for PMS activation.

View Article and Find Full Text PDF

The kinetically-derived maximal dose (KMD) is defined as the maximum external dose at which kinetics are unchanged relative to lower doses, e.g., doses at which kinetic processes are not saturated.

View Article and Find Full Text PDF

Altered DNA dynamics at lesion sites are implicated in how DNA repair proteins sense damage within genomic DNA. Using laser temperature-jump (T-jump) spectroscopy combined with cytosine-analog Förster Resonance Energy Transfer (FRET) probes that sense local DNA conformations, we measured the intrinsic dynamics of DNA containing 3 base-pair mismatches recognized in vitro by Rad4 (yeast ortholog of XPC). Rad4/XPC recognizes diverse lesions from environmental mutagens and initiates nucleotide excision repair.

View Article and Find Full Text PDF

Quantification of five antineoplastic agents in swab samples using UPLC-ESI-MS/MS: Method development and validation.

Anal Chim Acta

January 2025

Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at Work, Heverlee, Belgium. Electronic address:

Background: Antineoplastic agents are hazardous drugs used in cancer treatment and consequently can be present at the workplace (e.g. hospital), but also in a home-setting in case of treatment at home.

View Article and Find Full Text PDF

Background: Space-induced plant mutagenesis, driven by cosmic radiation, offers a promising approach for the selective breeding of new plant varieties. By leveraging the unique environment of outer space, we successfully induced mutagenesis in 'Deqin' alfalfa and obtained a fast-growing mutant. However, the molecular mechanisms underlying its rapid growth remain poorly unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!