Plastids are involved in phytohormone metabolism as well as photosynthesis. However, the mechanism by which plastid retrograde signals and phytohormones cooperatively regulate plastid biogenesis remains elusive. Here, we investigated the effects of an inhibitor and a mutation that generate biogenic plastid signals on phytohormones and vice versa. Inhibition of plastid biogenesis by norflurazon (NF) treatment and the plastid protein import2 (ppi2) mutation caused a decrease in salicylic acid (SA) and jasmonic acid (JA). This effect can be attributed in part to the altered expression of genes involved in the biosynthesis and the metabolism of SA and JA. However, SA-dependent induction of the PATHOGENESIS-RELATED1 gene was virtually unaffected in NF-treated plants and the ppi2 mutant. Instead, the level of chlorophyll in these plants was partially restored by the exogenous application of SA. Consistent with this observation, the levels of some photosynthesis-associated proteins increased in the ppi2 and NF-treated plants in response to SA treatment. This regulation in true leaves seems to occur at the posttranscriptional level since SA treatment did not induce the expression of photosynthesis-associated genes. In salicylic acid induction deficient 2 and lesions simulating disease resistance 1 mutants, endogenous SA regulates the accumulation of photosynthesis-associated proteins through transcriptional and posttranscriptional mechanisms. These data indicate that SA acts antagonistically to the inhibition of plastid biogenesis by promoting the accumulation of photosynthesis-associated proteins in Arabidopsis, suggesting a possible link between SA and biogenic plastid signaling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcab128 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China.
Peanut ( L.) is one of the most important crops for oil and protein production. The unique characteristic of peanut is geocarpy, which means that it blooms aerially and the peanut gynophores (pegs) penetrate into the soil, driving the fruit underground.
View Article and Find Full Text PDFNat Commun
November 2024
State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Joint Center for Life Sciences, Beijing Advanced Center of RNA Biology (BEACON), School of Life Sciences, Peking University, 100871, Beijing, China.
Photosynthesis requires chloroplasts, in which most proteins are nucleus-encoded and produced via cytoplasmic translation. The translation initiation factor eIF5B gates the transition from initiation (I) to elongation (E), and the Kozak motif is associated with translation efficiency, but their relationship is previously unknown. Here, with ribosome profiling, we determined the genome-wide I-E transition efficiencies.
View Article and Find Full Text PDFFront Plant Sci
September 2024
Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China.
is a mangrove associate with high medicinal and ecological values. However, due to the dual-pressure of climate change and human activities, has become endangered in China. Moreover, misidentification between and its terrestrial relative poses further challenges to field protection and proper medicinal usage of .
View Article and Find Full Text PDFNat Commun
August 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Chloroplasts are key players in photosynthesis and immunity against microbial pathogens. However, the precise and timely regulatory mechanisms governing the control of photosynthesis-associated nuclear genes (PhANGs) expression in plant immunity remain largely unknown. Here we report that TaPIR1, a Pst-induced RING-finger E3 ubiquitin ligase, negatively regulates Pst resistance by specifically interacting with TaHRP1, an atypical transcription factor histidine-rich protein.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China.
Plastid retrograde signaling plays a key role in coordinating the expression of plastid genes and photosynthesis-associated nuclear genes (PhANGs). Although plastid retrograde signaling can be substantially compromised by mitochondrial dysfunction, it is not yet clear whether specific mitochondrial factors are required to regulate plastid retrograde signaling. Here, we show that mitochondrial ATP synthase -subunit mutants with decreased ATP synthase activity are impaired in plastid retrograde signaling in .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!