ANTIBODIES AGAINST INFLUENZA VIRUS TYPES A AND B IN CANADIAN SEALS.

J Wildl Dis

Erasmus Medical Centre, Department of Viroscience, Rotterdam, 3015GE, the Netherlands.

Published: October 2021

Influenza viruses have been reported from marine mammals worldwide, particularly in pinnipeds, and have caused mass mortalities of seals in North America and Europe. Because influenza viruses in marine mammals can be zoonotic, our objective was to examine Canadian phocids for exposure to influenza A and B viruses in order to understand health risks to wild populations as well as to humans who consume or handle these animals. Blood was collected from 394 seals in eastern Canada from 1994 to 2005. Sera were screened for exposure to influenza viruses in three resident species of seals: harbour, Phoca vitulina (n=66); grey, Halichoerus grypus (n=82); ringed, Phoca hispida (n=2); and two migrant species: harp, Pagophilus groenlandica (n=206) and hooded, Cystophora cristata (n=38). Included were samples from captive grey (n=1) and harbour seals (n=8) at two aquaria. Sera were prescreened using indirect enzyme-linked immunosorbent assay (ELISA), and antibodies against influenza A virus were confirmed using a commercial competitive ELISA (IDEXX Europe B.V.). A subset of influenza A virus positive sera was used to determine common virus subtypes recognized by sera using reference strains. All positive sera in the indirect ELISA reacted with influenza A virus subtypes H3, H4, and H10 using a hemagglutination inhibition assay. Sera from harbour, grey, harp, and hooded seals had antibodies against influenza A and influenza B viruses (some cross-reactivity occurred). Overall, 33% (128/385) of wild seals were seropositive to influenza viruses, with the highest seroprevalence in harp (42%) followed by harbour (33%), grey (23%), and hooded (11%) seals. Antibodies were detected in both sexes and most age classes of wild seals. Two of eight captive harbour seals were seropositive to influenza B virus and four had cross-reactions to influenza A and B viruses. This study reports antibodies against influenza A and B viruses in four seal species from the same geographic area in eastern Canada.

Download full-text PDF

Source
http://dx.doi.org/10.7589/JWD-D-20-00175DOI Listing

Publication Analysis

Top Keywords

influenza viruses
32
influenza virus
20
antibodies influenza
16
influenza
13
seals
10
viruses
8
marine mammals
8
exposure influenza
8
eastern canada
8
harbour seals
8

Similar Publications

In late 2023 an H5N1 lineage of high pathogenicity avian influenza virus (HPAIV) began circulating in American dairy cattle Concerningly, high titres of virus were detected in cows' milk, raising the concern that milk could be a route of human infection. Cows' milk is typically pasteurised to render it safe for human consumption, but the effectiveness of pasteurisation on influenza viruses in milk was uncertain. To assess this, here we evaluate heat inactivation in milk for a panel of different influenza viruses.

View Article and Find Full Text PDF

Background: Understanding similarities and differences between hesitancy for influenza and COVID-19 vaccines could facilitate strategies to improve public receptivity toward vaccination.

Methods: We compared hesitancy for COVID-19 vaccines during the first 13 months of availability (January 2021-January 2022) with hesitancy for influenza vaccines in the 15 months prior to COVID-19 vaccine availability (October 2019-December 2020) among adults hospitalized with acute respiratory illness at 21 hospitals in the United States. We interviewed patients regarding vaccination status, willingness to be vaccinated, and perceptions of vaccine safety and efficacy.

View Article and Find Full Text PDF

Influenza virus pandemics and seasonal epidemics have claimed countless lives. Recurrent zoonotic spillovers of influenza viruses with pandemic potential underscore the need for effective countermeasures. In this study, we show that pre-exposure prophylaxis with broadly neutralizing antibody (bnAb) MEDI8852 is highly effective in protecting cynomolgus macaques from severe disease caused by aerosolized highly pathogenic avian influenza H5N1 virus infection.

View Article and Find Full Text PDF

Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.

View Article and Find Full Text PDF

Major change in swine influenza virus diversity in France owing to emergence and widespread dissemination of a newly introduced H1N2 1C genotype in 2020.

Virus Evol

December 2024

ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.

Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!