Targeting peptides are a promising tool for early diagnosis and therapy of cancer. Overexpression of urokinase plasminogen activator receptor (uPAR) leads to the progression of tumors including prostate, colorectal, ovarian, and breast cancers. To improve the diagnosis and imaging efficiency, herein we report a stable nanocomplex comprising methoxy-PEG-hydrazide (mPEG-H-M)-modified gold nanoparticles (AuNPs) conjugated to uPAR (urokinase plasminogen activator receptor)-targeting peptides GFD (growth factor domain-G) and SMB (somatomedian B-S) for efficient imaging of uPAR-overexpressing cancer cells. Fluorescently labeled targeting peptides were covalently linked to mPEG-H coated AuNPs, characterized, and analyzed by UV-vis spectroscopy, diffraction light scattering (DLS), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and fluorescence spectroscopy. In vitro evaluation was assessed with a fluorescence-activated cell sorter (FACS), cell adhesion, and fluorescence microscopy. The peptide-functionalized nanocomplex showed a higher uptake of AuNPs@MGS in comparison with AuNPs@G or AuNPs@S alone in uPAR-overexpressing cells and exhibits no toxicity when analyzed with MTT assay. Our results demonstrated that the developed nanocomplex can be used as a platform for imaging and diagnosis of metastatic tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.1c02697DOI Listing

Publication Analysis

Top Keywords

urokinase plasminogen
12
plasminogen activator
12
stable nanocomplex
8
targeting peptides
8
activator receptor-mediated
4
receptor-mediated targeting
4
targeting stable
4
nanocomplex
4
nanocomplex coupled
4
coupled specific
4

Similar Publications

Background/purpose: Revascularization procedures are used over apexification to treat teeth with necrotic pulp tissues and incomplete root formation. Clinically, inducing proliferation, migration, matrix deposition, and differentiation of stem cells from apical papilla (SCAPs) are critical for pulp regeneration. The study aimed to elucidate the impact of bone morphogenetic protein-4 (BMP-4) on plasminogen activation molecules and the osteogenic/odontogenic differentiation of SCAPs, as well as understand the related signaling mechanisms.

View Article and Find Full Text PDF

Hormonal Regulation of Urokinase- and Tissue-Type Plasminogen Activator in Mouse Sertoli Cells.

Mol Reprod Dev

January 2025

Department of Anatomy, Histology, Forensic Medicine and Orthopedic, Section of Histology, Sapienza University of Rome, Rome, Italy.

A role for the plasminogen activator (PA) system has been postulated in mammalian gonads, considering the complex process of morphogenesis these organs undergo during their development. Our results show that mouse Sertoli cells under basal conditions produce both types of PA, tissue-type PA (tPA) and urokinase-type PA (uPA), and hormonal treatments increase the production of both enzymes. The increased enzyme secretion does not correlate with a parallel increase in their mRNAs.

View Article and Find Full Text PDF

Thrombolytic efficacy and safety of recombinant scu-PA in a rabbit retinal vein occlusion model.

Eur J Pharmacol

January 2025

Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital. Electronic address:

Retinal vein occlusion (RVO) has become the second most common retinal vascular disease after diabetic retinopathy. Existing therapeutic approaches, including intravitreal injection of antivascular endothelial growth factors (anti-VEGFs) and/or glucocorticoids and laser therapy, primarily address secondary macular edema and neovascularisation. However, these strategies do not address the underlying cause of the disease and may have harmful side effects.

View Article and Find Full Text PDF

The role of the plasminogen activation system is to regulate the activity of the extracellular protease plasmin. It comprises the urokinase plasminogen activator (uPA), a specific extracellular protease which activates plasminogen, its inhibitor PAI1, and the urokinase plasminogen activator receptor, uPAR, which localizes the urokinase activity. The plasminogen activation system is involved in tissue remodeling through extracellular matrix degradation, and therefore participates in numerous physiological and pathological processes, which make it a potential biomarker.

View Article and Find Full Text PDF

Plasmin, the final product of fibrinolysis, is a broad-spectrum serine protease that degrades extracellular matrix (ECM) components, a function exploited by multiple pathogens for dissemination purposes. The trematode Fasciola hepatica is the leading cause of fasciolosis, a major disease of livestock and an emerging zoonosis in humans. Infection success depends on the ability of F.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!