Tetrahedral Framework Nucleic Acids Ameliorate Insulin Resistance in Type 2 Diabetes Mellitus the PI3K/Akt Pathway.

ACS Appl Mater Interfaces

State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P. R. China.

Published: September 2021

Insulin resistance (IR) is one of the essential conditions in the development of type 2 diabetes mellitus (T2DM). IR occurs in hepatic cells when the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is downregulated; thus, activating this pathway can significantly improve insulin sensitivity and ameliorate T2DM. Tetrahedral framework nucleic acids (tFNAs), a DNA nanomaterial, are synthesized from four single-stranded DNA molecules. tFNAs possess excellent biocompatibility and good water solubility and stability. tFNAs can promote cell proliferation, cell autophagy, wound healing, and nerve regeneration by activating the PI3K/Akt pathway. Herein, we explore the effects and underlying mechanisms of tFNAs on IR. The results displayed that tFNAs could increase glucose uptake and ameliorate IR by activating the IRS-1/PI3K/Akt pathway in glucosamine (GlcN)-stimulated HepG2 cells. By employing a PI3K inhibitor, we confirmed that tFNAs reduce IR through the PI3K/Akt pathway. Moreover, tFNAs can promote hepatic cell proliferation and inhibit GlcN-induced cell apoptosis. In a T2DM mouse model, tFNAs reduce blood glucose levels and ameliorate hepatic IR the PI3K/Akt pathway. Taken together, tFNAs can improve hepatic IR and alleviate T2DM through the PI3K/Akt pathway, making contribution to the potential application of tFNAs in T2DM.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c11468DOI Listing

Publication Analysis

Top Keywords

pi3k/akt pathway
20
tfnas
10
tetrahedral framework
8
framework nucleic
8
nucleic acids
8
insulin resistance
8
type diabetes
8
diabetes mellitus
8
pathway
8
tfnas promote
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!