Simplified perovskite solar cells (PSCs) were fabricated with the perovskite layer sandwiched and encapsulated between carbon-based electron transport layer (ETL) and counter electrode (CE) by a fully blade-coated process. A self-assembled monolayer of amphiphilic silane (AS) molecules on transparent conducting oxide (TCO) substrate appeals to the fullerene ETL deposition and preserves its integrity against the solvent damage. The AS serves as a "molecular glue" to strengthen the adhesion toughness at the TCO/ETL interface via robust chemical interaction and bonding, facilitating the interfacial charge extraction, increasing PCEs by 77 % and reducing hysteresis. A PCE of 18.64 % was achieved for the fully printed devices, one of the highest reported for carbon-based PSCs. AS-assisted interfacial linkage and carbon-material-assisted self-encapsulation enhance the stability of the PSCs, which did not experience performance degradation when stored at ambient conditions for over 3000 h.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202108495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!