A network pharmacology analysis on drug-like compounds from Ganoderma lucidum for alleviation of atherosclerosis.

J Food Biochem

Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.

Published: September 2021

Ganoderma lucidum (GL) is known as a potent alleviator against chronic inflammatory disease like atherosclerosis (AS), but its mechanisms against AS have not been unveiled. This research aimed to identify the key compounds(s) and mechanism(s) of GL against AS through network pharmacology. The compounds from GL were identified by gas chromatography-mass spectrum (GC-MS), and SwissADME screened their physicochemical properties. Then, the target(s) associated with the screened compound(s) or AS related targets were identified by public databases, and we selected the overlapping targets using a Venn diagram. The networks between overlapping targets and compounds were visualized, constructed, and analyzed by RStudio. Finally, we performed a molecular docking test (MDT) to explore key target(s), compound(s), on AutoDockVina. A total of 35 compounds in GL were detected via GC-MS, and 34 compounds (accepted by Lipinski's rule) were selected as drug-like compounds (DLCs). A total of 34 compounds were connected to the number of 785 targets, and DisGeNET and Online Mendelian Inheritance in Man (OMIM) identified 2,606 AS-related targets. The final 98 overlapping targets were extracted between the compounds-targets and AS-related targets. On Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, the number of 27 signaling pathways were sorted out, and a hub signaling pathway (MAPK signaling pathway), a core gene (PRKCA), and a key compound (Benzamide, 4-acetyl-N-[2,6-dimethylphenyl]) were selected among the 27 signaling pathways via MDT. Overall, we found that the identified 3 DLCs from GL have potent anti-inflammatory efficacy, improving AS by inactivating the MAPK signaling pathway. PRACTICAL APPLICATIONS: Ganoderma lucidum (GL) has been used as a medicinal or edible mushroom for chronic inflammatory patients: diabetes mellitus and dyslipidemia, especially atherosclerosis (AS). Until now, the majority of mushroom research has been implemented regarding β-glucan derivatives with very hydrophilic physicochemical properties. It implies that β-glucan or its derivatives have poor bioavailability. Hence, we have involved GC-MS in identifying lipophilic compounds from GL, which filtered them in silico to sort drug-like compounds (DLCs). Then, we retrieved targets associated with the DLCs, and identified a key signaling pathway, key targets, and key compounds against AS. In this paper, we utilized bioinformatics and network pharmacology theory to understand the uncovered pharmacological mechanism of GL on AS. To sum things up, our analysis elucidates the relationships between signaling pathways, targets, and compounds in GL. Ultimately, this work provides biochemical evidence to identify the therapeutic effect of GL on AS, and a scientific basis for deciphering the key mechanism on DLCs of GL against AS.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jfbc.13906DOI Listing

Publication Analysis

Top Keywords

signaling pathway
16
compounds
13
network pharmacology
12
drug-like compounds
12
ganoderma lucidum
12
targets
12
overlapping targets
12
targets compounds
12
signaling pathways
12
chronic inflammatory
8

Similar Publications

Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).

View Article and Find Full Text PDF

Protein dynamics underlies strong temperature dependence of heat receptors.

Proc Natl Acad Sci U S A

January 2025

Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.

Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.

View Article and Find Full Text PDF

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive sarcomas and the primary cause of mortality in patients with neurofibromatosis type 1 (NF1). These malignancies develop within preexisting benign lesions called plexiform neurofibromas (PNs). PNs are solely driven by biallelic loss eliciting RAS pathway activation, and they respond favorably to MEK inhibitor therapy.

View Article and Find Full Text PDF

Deep conservation complemented by novelty and innovation in the insect eye ground plan.

Proc Natl Acad Sci U S A

January 2025

Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.

A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!