A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of Soybean Pubescence from Multispectral Aerial Imagery. | LitMetric

Classification of Soybean Pubescence from Multispectral Aerial Imagery.

Plant Phenomics

Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada.

Published: August 2021

The accurate determination of soybean pubescence is essential for plant breeding programs and cultivar registration. Currently, soybean pubescence is classified visually, which is a labor-intensive and time-consuming activity. Additionally, the three classes of phenotypes (tawny, light tawny, and gray) may be difficult to visually distinguish, especially the light tawny class where misclassification with tawny frequently occurs. The objectives of this study were to solve both the throughput and accuracy issues in the plant breeding workflow, develop a set of indices for distinguishing pubescence classes, and test a machine learning (ML) classification approach. A principal component analysis (PCA) on hyperspectral soybean plot data identified clusters related to pubescence classes, while a Jeffries-Matusita distance analysis indicated that all bands were important for pubescence class separability. Aerial images from 2018, 2019, and 2020 were analyzed in this study. A 60-plot test (2019) of genotypes with known pubescence was used as reference data, while whole-field images from 2018, 2019, and 2020 were used to examine the broad applicability of the classification methodology. Two indices, a red/blue ratio and blue normalized difference vegetation index (blue NDVI), were effective at differentiating tawny and gray pubescence types in high-resolution imagery. A ML approach using a support vector machine (SVM) radial basis function (RBF) classifier was able to differentiate the gray and tawny types (83.1% accuracy and kappa = 0.740 on a pixel basis) on images where reference training data was present. The tested indices and ML model did not generalize across years to imagery that did not contain the reference training panel, indicating limitations of using aerial imagery for pubescence classification in some environmental conditions. High-throughput classification of gray and tawny pubescence types is possible using aerial imagery, but light tawny soybeans remain difficult to classify and may require training data from each field season.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363756PMC
http://dx.doi.org/10.34133/2021/9806201DOI Listing

Publication Analysis

Top Keywords

soybean pubescence
12
aerial imagery
12
light tawny
12
pubescence
10
plant breeding
8
tawny
8
tawny gray
8
pubescence classes
8
images 2018
8
2018 2019
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!