The present study investigated the differences in the stride pattern of the lower extremities among different stride types in baseball pitchers with the aim of evaluating stride movement and skills to improve training effectiveness. Thirty elite male college baseball pitchers volunteered to pitch on an indoor-mound-like force plate, where motion data of their fastest strike trials were collected using an eight-camera motion analysis system at a 200-250 Hz sampling rate. Pelvis center trajectories of each participant were calculated and further categorized into three groups: tall-and-fall (TF), dip-and-drive (DD), and mixed (MX) pitchers. Motion analysis revealed that DD pitchers initiated pivot-knee extension and pivot-hip adduction earlier than TF pitchers and accelerated their bodies sooner than TF pitchers. In addition, TF pitchers accelerated their bodies forward by pivoting their legs until the middle of the arm-cocking and acceleration phases. The movement patterns of MX pitchers were similar to those of DD pitchers in terms of pivot leg, although this occurred a little later in the stride. Our findings are useful in developing training strategies for coaches, players, and trainers to better meet the demands of different pitching styles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366559PMC
http://dx.doi.org/10.3389/fspor.2021.670395DOI Listing

Publication Analysis

Top Keywords

pitchers
9
stride pattern
8
pattern lower
8
lower extremities
8
extremities stride
8
stride types
8
types baseball
8
baseball pitchers
8
motion analysis
8
pitchers accelerated
8

Similar Publications

(1) Background: Glenohumeral internal and external rotational range-of-movement deficits (GIRDs and GERDs) are some of the primary outcomes used to determine the risk of injury in overhead athletes, such as tennis players. Nevertheless, the current testing position does not consider the fact that most tennis actions are repeated at 45° of abduction, and actively. The aim of this study was to establish normative values of pathological GIRDs and GERDs in tennis players and to provide normative values for both the passive and active rotational range of motion of the glenohumeral joint at 90° and 45° of abduction.

View Article and Find Full Text PDF

Background: Ulnar collateral ligament reconstruction (UCLR) is a common elbow procedure in baseball pitchers. Previous studies of Major League Baseball pitchers identified the weather as a potential risk factor, as warmer climates enable more annual playing time and increase overuse injury risks.

Purpose: To determine whether weather conditions play a role in UCLR rates and timing for National Collegiate Athletic Association (NCAA) Division I (D1) collegiate pitchers in the United States.

View Article and Find Full Text PDF

Background: During a windmill softball pitch, the throwing shoulder experiences forces greater than the pitcher's body weight. Various kinematic, kinetic, and performance factors have been related to shoulder forces and torques in softball pitchers, and softball research has examined clinical screening measures such as range of motion, muscular strength, and/or neuromuscular control. However, no studies have explicitly identified low-cost, clinic-friendly screening measures predictive of shoulder distraction forces in softball pitchers.

View Article and Find Full Text PDF

Processing pathways between sensory and default mode network (DMN) regions support recognition, navigation, and memory but their organisation is not well understood. We show that functional subdivisions of visual cortex and DMN sit at opposing ends of parallel streams of information processing that support visually mediated semantic and spatial cognition, providing convergent evidence from univariate and multivariate task responses, intrinsic functional and structural connectivity. Participants learned virtual environments consisting of buildings populated with objects, drawn from either a single semantic category or multiple categories.

View Article and Find Full Text PDF

Meeting report - Alpine desmosome disease meeting 2024: advances and emerging topics in desmosomes and related diseases.

J Cell Sci

January 2025

Institute of Anatomy and Experimental Morphology, Center for Experimental Medicine, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.

Desmosomes are adhesive cell contacts abundant in tissues exposed to mechanical strain, such as the stratified and simple epithelia of the epidermis and mucous membranes, as well as the myocardium. Besides their role in mechanical cell cohesion, desmosomes also modulate pathways important for tissue differentiation, wound healing and immune responses. Dysfunctional desmosomes, resulting from pathogenic variants in genes encoding desmosomal components, autoantibodies targeting desmosomal adhesion molecules or inflammation, cause the life-threatening diseases arrhythmogenic cardiomyopathy and pemphigus and contribute to the pathogenesis of inflammatory bowel diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!