Experimental studies have demonstrated a relationship between spinal injury severity and vertebral kinematics, influenced by the initial spinal alignment of automotive occupants. Spinal alignment has been considered one of the possible causes of gender differences in the risk of sustaining spinal injuries. To predict vertebral kinematics and investigate spinal injury mechanisms, including gender-related mechanisms, under different seat back inclinations, it is needed to investigate the effect of the seat back inclination on initial spinal alignment in automotive seating postures for both men and women. The purpose of this study was to investigate the effect of the seat back inclination on spinal alignments, comparing spinal alignments of automotive seating postures in the 20° and 25° seat back angle and standing and supine postures. The spinal columns of 11 female and 12 male volunteers in automotive seating, standing, and supine postures were scanned in an upright open magnetic resonance imaging system. Patterns of their spinal alignments were analyzed using Multidimensional Scaling presented in a distribution map. Spinal segmental angles (cervical curvature, T1 slope, total thoracic kyphosis, upper thoracic kyphosis, lower thoracic kyphosis, lumbar lordosis, and sacral slope) were also measured using the imaging data. In the maximum individual variances in spinal alignment, a relationship between the cervical and thoracic spinal alignment was found in multidimensional scaling analyses. Subjects with a more lordotic cervical spine had a pronounced kyphotic thoracic spine, whereas subjects with a straighter to kyphotic cervical spine had a less kyphotic thoracic spine. When categorizing spinal alignments into two groups based on the spinal segmental angle of cervical curvature, spinal alignments with a lordotic cervical spine showed significantly greater absolute average values of T1 slope, total thoracic kyphosis, and lower thoracic kyphosis for both the 20° and 25° seat back angles. For automotive seating postures, the gender difference in spinal alignment was almost straight cervical and less-kyphotic thoracic spine for the female subjects and lordotic cervical and more pronounced kyphotic thoracic spine for the male subjects. The most prominent influence of seatback inclination appeared in Total thoracic kyphosis, with increased angles for 25° seat back, 8.0° greater in spinal alignments with a lordotic cervical spine, 3.2° greater in spinal alignments with a kyphotic cervical spine. The difference in total thoracic kyphosis between the two seatback angles and between the seating posture with the 20° seat back angle and the standing posture was greater for spinal alignments with a lordotic cervical spine than for spinal alignments with a kyphotic cervical spine. The female subjects in this study had a tendency toward the kyphotic cervical spine. Some of the differences between average gender-specific spinal alignments may be explained by the findings observed in the differences between spinal alignments with a lordotic and kyphotic cervical spine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365515PMC
http://dx.doi.org/10.3389/fbioe.2021.684043DOI Listing

Publication Analysis

Top Keywords

spinal alignments
44
cervical spine
36
spinal alignment
28
thoracic kyphosis
28
spinal
24
automotive seating
20
lordotic cervical
20
kyphotic cervical
20
seating postures
16
total thoracic
16

Similar Publications

Introduction: In asymptomatic subjects, variations of sagittal alignment parameters according to age and pelvic incidence (PI) has been reported. The aim of this observational study was to describe thoraco-lumbar sagittal alignment in patients with degenerative scoliosis and to compare them to asymptomatic individuals, seeking for the specific effect of deformity in similar age and PI groups.

Materials And Methods: Full spine radiographs of 235 asymptomatic subjects and 243 scoliosis patients were analyzed: cervico-thoracic inflexion point (CTIP), thoraco-lumbar inflexion point (TLIP), lumbar lordosis (LL) L1-S1, LL (TLIP-S1), LL superior arch (TLIP-lumbar apex), LL inferior arch (lumbar apex-S1), PI, thoracic kyphosis (TK) T5-T12, TK T1-T12, number of vertebrae CTIP-TLIPandTLIP-S1.

View Article and Find Full Text PDF

Background Context: Correcting sagittal malalignment in adult spinal deformity (ASD) is a challenging task, often requiring complex surgical interventions like pedicle subtraction osteotomies (PSOs). Different types of three-column osteotomies (3COs), including Schwab 3, Schwab 4, Schwab 4 with interbody cages, and the "sandwich" technique, aim to optimize alignment and fusion outcomes. The role of interbody cages in enhancing fusion and segmental correction remains unclear.

View Article and Find Full Text PDF

Purpose: Clinicians monitor scoliosis progression using multiple radiographs during growth. During imaging, arms must be elevated to visualize vertebrae, possibly affecting sagittal alignment. This study aimed to determine the arm position that best represents habitual standing (and possibly allowing hand-based skeletal maturity assessment) to obtain frontal and lateral stereo-radiographs as measured using frontal, sagittal, and transverse angles.

View Article and Find Full Text PDF

To review the outcomes of patients who underwent repeated vertebroplasty (VP) surgery for adjacent segment fractures (ASF), defined as new osteoporotic vertebral fractures occurring at levels immediately above or below a previously treated vertebra. From 1 January 2018, to 31 December 2020, forty-one patients who developed ASF following initial VP and underwent repeated VP were enrolled in our study. Radiographic measurements included single and two-segment kyphotic angles (SKA and TKA), and anterior and mid-vertebral body height (AVH and MVH).

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the risk factors for loss of intraoperative correction, as measured by lumbar lordosis (LL), with an emphasis on rod characteristics.

Methods: A retrospective study identified patients at least 50 years of age who underwent instrumented fusion with an upper instrumented vertebrae (UIV) in the upper thoracic spine (T1-T6) or thoracolumbar junction (T10-L2) to the pelvis. Inclusion criteria included intraoperative x-rays that allowed for LL measurement, postop standing x-rays, and a minimum follow up of 24 months with the original rods still in place.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!