Tuberculosis (TB) is a chronic infectious disease mainly caused by (MTB), but other members of the complex (MTBC), especially (pyrazinamide-resistant organisms), may also be involved. Thus, the ability to rapidly detect and identify MTB from other MTBC members (e.g., , , ) is essential for the prevention and treatment of TB. A novel diagnostic method for the rapid detection and differentiation of MTB, which employs multiplex loop-mediated isothermal amplification (mLAMP) combined with a nanoparticle-based lateral flow biosensor (LFB), was established (mLAMP-LFB). Two sets of specific primers that target the and genes were designed according to the principle of LAMP. Various pathogens were used to optimize and evaluate the mLAMP-LFB assay. The optimal conditions for mLAMP-LFB were determined to be 66°C and 40 min, and the amplicons were directly verified by observing the test lines on the biosensor. The LAMP assay limit of detection (LoD) was 125 fg per vessel for the pure genomic DNA of MTB and 4.8 × 10 CFU/ml for the sputum samples, and the analytical specificity was 100%. In addition, the whole process, including the clinical specimen processing (35 min), isothermal amplification (40 min), and result confirmation (1-2 min), could be completed in approximately 80 min. Thus, mLAMP-LFB is a rapid, reliable, and sensitive method that is able to detect representative members of MTBC and simultaneously differentiate MTB from other MTBC members, and it can be used as a potential screening tool for TB in clinical, field, and basic laboratory settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8365424 | PMC |
http://dx.doi.org/10.3389/fmicb.2021.708658 | DOI Listing |
Pol J Vet Sci
December 2024
School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang, China.
Pseudorabies virus (PRV) is one of the most important infectious diseases which leads to significant economic losses in the global swine industry. The gE-deleted vaccine is widely used to prevent susceptible pigs from PRV infection. There is no report of the differentiation of PRV wild strain and vaccine strain by recombinase polymerase amplification (RPA) coupled with a lateral flow dipstick (LFD) method.
View Article and Find Full Text PDFBio Protoc
December 2024
Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.
MicroRNAs (miRNAs) are small, non-coding RNAs that play pivotal roles in gene regulation; they are increasingly recognized as vital biomarkers for various diseases, notably cancer. Conventional methods for miRNA detection, such as quantitative PCR and microarray analysis, often entail intricate sample preparation and lack the requisite sensitivity to detect low-abundance miRNAs like miRNA-21. This protocol presents an innovative approach that combines branched hybridization chain reaction (bHCR) with DNAzyme technology for the precise detection of miRNA-21.
View Article and Find Full Text PDFPhytochem Anal
December 2024
School of Food and Biological Engineering, Henan University of Science and Technology, Luoyang, Henan, China.
Introduction: The extraction of DNA is the basis of molecular biology research. The quality of the extracted DNA is one of the key factors for the success of molecular biology experiments.
Objective: To select a suitable DNA extraction method for Chinese medicinal herbs and seeds.
Appl Microbiol Biotechnol
December 2024
Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil.
Malaria, a parasitic disease caused by Plasmodium spp. and transmitted by Anopheles mosquitoes, remains a major global health issue, with an estimated 249 million cases and 608,000 deaths in 2022. Rapid and accurate diagnosis and treatment are crucial for malaria control and elimination.
View Article and Find Full Text PDFVet Sci
November 2024
Hebei Key Laboratory of Preventive Veterinary Medicine, Hebei Normal University of Science & Technology, Qinhuangdao 066600, China.
Background: Bovine respiratory syncytial virus (BRSV) is a significant cause of bovine respiratory disease, resulting in significant losses to the cattle industry. For rapid detection of BRSV, a real-time recombinase-aided isothermal amplification assay (qRT-RAA) based on the gene of BRSV was developed in this study.
Results: The developed qRT-RAA assay showed good exponential amplification of the target fragment in 20 min at a constant temperature of 39 °C.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!