AI Article Synopsis

  • Fructose consumption is associated with increased rates of obesity and cancer, highlighting its health risks.
  • Dietary fructose is metabolized in the small intestine, leading to high levels of fructose 1-phosphate, which affects cell mechanisms that may contribute to these health issues.
  • Research shows that fructose enhances intestinal cell survival and villus length, improving nutrient absorption and fat accumulation, thereby linking high-fructose diets to obesity and tumor growth.

Article Abstract

Fructose consumption is linked to the rising incidence of obesity and cancer, which are two of the leading causes of morbidity and mortality globally. Dietary fructose metabolism begins at the epithelium of the small intestine, where fructose is transported by glucose transporter type 5 (GLUT5; encoded by SLC2A5) and phosphorylated by ketohexokinase to form fructose 1-phosphate, which accumulates to high levels in the cell. Although this pathway has been implicated in obesity and tumour promotion, the exact mechanism that drives these pathologies in the intestine remains unclear. Here we show that dietary fructose improves the survival of intestinal cells and increases intestinal villus length in several mouse models. The increase in villus length expands the surface area of the gut and increases nutrient absorption and adiposity in mice that are fed a high-fat diet. In hypoxic intestinal cells, fructose 1-phosphate inhibits the M2 isoform of pyruvate kinase to promote cell survival. Genetic ablation of ketohexokinase or stimulation of pyruvate kinase prevents villus elongation and abolishes the nutrient absorption and tumour growth that are induced by feeding mice with high-fructose corn syrup. The ability of fructose to promote cell survival through an allosteric metabolite thus provides additional insights into the excess adiposity generated by a Western diet, and a compelling explanation for the promotion of tumour growth by high-fructose corn syrup.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8686685PMC
http://dx.doi.org/10.1038/s41586-021-03827-2DOI Listing

Publication Analysis

Top Keywords

dietary fructose
12
cell survival
12
nutrient absorption
12
fructose improves
8
fructose 1-phosphate
8
intestinal cells
8
villus length
8
pyruvate kinase
8
promote cell
8
tumour growth
8

Similar Publications

Little is known about how blood free amino acids (FAAs) change in metabolic dysfunction-associated steatotic liver disease (MASLD). This study aims to identify the imbalance of FAAs in MASLD and explore its correction as a potential therapeutic target. We analyzed plasma FAAs data from 23,036 individuals with steatosis information from a biobank in Japan, and 310 patients with MASLD were enrolled.

View Article and Find Full Text PDF

With the increasing intake of dietary fructose, primarily from sucrose and sweetened beverages, metabolic illnesses such as type 2 diabetes mellitus, hypertension, fatty liver disease, dyslipidemia, and hyperuricemia have become more prevalent worldwide, and there is also growing concern about the development of malignancies. These negative health impacts have been validated in various meta-analyses and randomized controlled trials. In contrast, the naturally occurring fructose found in fruits and vegetables contains only a minimal amount of fructose and, when consumed in moderation, may be a healthier choice.

View Article and Find Full Text PDF

6-Gingerol, a Bioactive Compound of , Ameliorates High-Fat High-Fructose Diet-Induced Non-Alcoholic Related Fatty Liver Disease in Rats.

J Exp Pharmacol

December 2024

Research Center for Radioisotope, Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia.

Purpose: Endoplasmic reticulum (ER) stress has a prominent role in the pathogenesis of high-fat diet-induced non-alcohol related fatty liver disease (NAFLD). The aim of this study is to investigate the effects of 6-G on the reduction of ER stress-induced NAFLD in metabolic syndrome (MetS) rats.

Methods: Twenty-five male Sprague-Dawley rats were fed with a high-fat high-fructose (HFHF) diet for 16 weeks.

View Article and Find Full Text PDF

Food allergies are pathological adverse reactions against harmless dietary proteins. While studies have shown the involvement of host metabolic changes (, lipid metabolism and amino acid metabolism) in the development of food allergy (FA), the adaptive changes in glucose metabolism induced by food allergen exposure remain largely unclear. In this study, BALB/c mice were sensitized intraperitoneally with an ovalbumin (OVA)/aluminum adjuvant, followed by oral OVA challenges to induce anaphylaxis.

View Article and Find Full Text PDF

The development of cardiometabolic (CM) diseases is associated with chronic low-grade inflammation, partly linked to alterations of the gut microbiota (GM) and reduced intestinal integrity. The SINFONI project investigates a multifunctional (MF) nutritional strategy's impact combining different bioactive compounds on inflammation, GM modulation and CM profile. In this randomized crossover-controlled study, 30 subjects at CM-risk consumed MF cereal-products, enriched with polyphenols, fibers, slowly-digestible starch, omega-3 fatty acids or Control cereal-products (without bioactive compounds) for 2 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!