Successful aging is likely to involve both genetic and environmental factors, but environmental toxicants that accelerate aging are not known. Human exposure to mercury is common, and mercury has genotoxic, autoimmune, and free radical effects which could contribute to age-related disorders. The presence of inorganic mercury was therefore assessed in the organs of 170 people aged 1-104 years to determine the prevalence of mercury in human tissues at different ages. Mercury was found commonly in cells of the brain, kidney, thyroid, anterior pituitary, adrenal medulla and pancreas. The prevalence of mercury in these organs increased during aging but decreased in people aged over 80 years. People with mercury in one organ usually also had mercury in several others. In conclusion, the prevalence of inorganic mercury in human organs increases with age. The relative lack of tissue mercury in the very old could account for the flattened mortality rate and reduced incidence of cancer in this advanced age group. Since mercury may accelerate aging, efforts to reduce atmospheric mercury pollution could improve the chances of future successful aging.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373952 | PMC |
http://dx.doi.org/10.1038/s41598-021-96359-8 | DOI Listing |
Crit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Public Health Department, School of Medicine, Universidad Industrial de Santander, Bucaramanga, Colombia.
The "La Esperanza" native mercury mine in Aranzazu, (Caldas, Colombia) was active from 1948 until 1975. Before the final closure of the mine, the company began using dimercaprol (BAL, British Anti-Lewisite) and penicillamine for the treatment of hydrargyrism among workers. Mercury poisoning among miners was frequent due to precarious working conditions, inadequate technology, difficult terrain, and the high toxicity of native mercury within the mine.
View Article and Find Full Text PDFSci Total Environ
January 2025
ECOMARE, CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Estrada do Porto de Pesca Costeira, 3830-565 Gafanha da Nazaré, Portugal.
Within the UN Decade on Ecosystem Restoration (2021-2030) framework, a Nature-based Solution (NbS) using Zostera noltei transplants was tested to restore a historically contaminated intertidal area. In-situ transplantation relied on patches of seagrass and sediment from a Donor meadow and its evolution was monitored for two years. The evaluation of the transplant success encompassed the seagrass coverage area, seagrass biomass, tissue mercury (Hg) accumulation, and photosynthetic efficiency.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Savannah River National Laboratory, Aiken, SC, USA.
Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China. Electronic address:
As a heavy metal contaminant, mercury ion (Hg) has caused great harm to environment and life. Mercury ions will migrate and transform in the environment and eventually accumulate in the human body, thus causing human poisoning. Therefore, it is of great significance to detect Hg in the environment and living bodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!