This manuscript presents new method of phosphorus recovery from aqueous solutions in a convenient form of readily-soluble phosphates using chitosan hydrogels. Non-modified chitosan hydrogel granules (CHs) and chitosan hydrogel granules crosslinked with epichlorohydrin (CHs-ECH) served as orthophosphate ion carriers. The developed method was based on cyclic sorption/desorption of orthophosphates, with desorption performed in each cycle to the same solution (the concentrate). The concentrations of orthophosphates obtained in the concentrates depended on, i.a., sorbent type, sorption pH, source solution concentration, and desorption pH. Phosphorus concentrations in the concentrates were even 30 times higher than these in the source solutions. The maximum concentrate concentrations reached 332.0 mg P-PO/L for CHs and 971.6 mg P-PO/L for CHs-ECH. The experimental series with CHs-ECH were characterized by higher concentrations of the obtained concentrate, however the concentrates were also more contaminated with Cl and Na ions compared to series with CHs. The high content of chlorine and sodium ions in the concentrates was also favored by the low pH of sorption (pH < 4) and very high pH of desorption (pH > 12) in the cycles. After concentrate evaporation, phosphorus content in the sediment ranged from 17.81 to 19.83% for CHs and from 16.04 to 17.74% for CHs-ECH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373865PMC
http://dx.doi.org/10.1038/s41598-021-96416-2DOI Listing

Publication Analysis

Top Keywords

chitosan hydrogel
12
aqueous solutions
8
hydrogel granules
8
concentrate concentrations
8
recovery phosphorus
4
phosphorus soluble
4
soluble phosphates
4
phosphates aqueous
4
chitosan
4
solutions chitosan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!