With diffuse infiltrative glioma being increasingly recognized as a systemic brain disorder, the macroscopically apparent tumor lesion is suggested to impact on cerebral functional and structural integrity beyond the apparent lesion site. We investigated resting-state functional connectivity (FC) and diffusion-MRI-based structural connectivity (SC) (comprising edge-weight (EW) and fractional anisotropy (FA)) in isodehydrogenase mutated (IDHmut) and wildtype (IDHwt) patients and healthy controls. SC and FC were determined for whole-brain and the Default-Mode Network (DMN), mean intra- and interhemispheric SC and FC were compared across groups, and partial correlations were analyzed intra- and intermodally. With interhemispheric EW being reduced in both patient groups, IDHwt patients showed FA decreases in the ipsi- and contralesional hemisphere, whereas IDHmut patients revealed FA increases in the contralesional hemisphere. Healthy controls showed strong intramodal connectivity, each within the structural and functional connectome. Patients however showed a loss in structural and reductions in functional connectomic coherence, which appeared to be more pronounced in IDHwt glioma patients. Findings suggest a relative dissociation of structural and functional connectomic coherence in glioma patients at the time of diagnosis, with more structural connectomic aberrations being encountered in IDHwt glioma patients. Connectomic profiling may aid in phenotyping and monitoring prognostically differing tumor types.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8373888PMC
http://dx.doi.org/10.1038/s41598-021-95932-5DOI Listing

Publication Analysis

Top Keywords

glioma patients
16
structural functional
12
functional connectomic
12
connectomic coherence
12
dissociation structural
8
coherence glioma
8
patients
8
idhwt patients
8
healthy controls
8
contralesional hemisphere
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!