Small interfering RNAs (siRNAs) are often amplified from transcripts cleaved by RNA-induced silencing complexes (RISCs) containing a small RNA (sRNA) and an Argonaute protein. Amplified siRNAs, termed secondary siRNAs, are important for reinforcement of target repression. In plants, target cleavage by RISCs containing 22-nucleotide (nt) sRNA and Argonaute 1 (AGO1) triggers siRNA amplification. In this pathway, the cleavage fragment is converted into double-stranded RNA (dsRNA) by RNA-dependent RNA polymerase 6 (RDR6), and the dsRNA is processed into siRNAs by Dicer-like proteins. Because nonspecific RDR6 recruitment causes nontarget siRNA production, it is critical that RDR6 is specifically recruited to the target RNA that serves as a template for dsRNA formation. Previous studies showed that Suppressor of Gene Silencing 3 (SGS3) binds and stabilizes 22-nt sRNA-containing AGO1 RISCs associated with cleaved target, but how RDR6 is recruited to targets cleaved by 22-nt sRNA-containing AGO1 RISCs remains unknown. Here, using cell-free extracts prepared from suspension-cultured cells, we established an in vitro system for secondary siRNA production in which 22-nt siRNA-containing AGO1-RISCs but not 21-nt siRNA-containing AGO1-RISCs induce secondary siRNA production. In this system, addition of recombinant Silencing Defective 5 (SDE5) protein remarkably enhances secondary siRNA production. We show that RDR6 is recruited to a cleavage fragment by 22-nt siRNA-containing AGO1-RISCs in coordination with SGS3 and SDE5. The SGS3-SDE5-RDR6 multicomponent recognition system and the poly(A) tail inhibition may contribute to securing specificity of siRNA amplification.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8403909 | PMC |
http://dx.doi.org/10.1073/pnas.2102885118 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!