Objectives: To examine the association between cognitively stimulating work and subsequent risk of dementia and to identify protein pathways for this association.
Design: Multicohort study with three sets of analyses.
Setting: United Kingdom, Europe, and the United States.
Participants: Three associations were examined: cognitive stimulation and dementia risk in 107 896 participants from seven population based prospective cohort studies from the IPD-Work consortium (individual participant data meta-analysis in working populations); cognitive stimulation and proteins in a random sample of 2261 participants from one cohort study; and proteins and dementia risk in 13 656 participants from two cohort studies.
Main Outcome Measures: Cognitive stimulation was measured at baseline using standard questionnaire instruments on active versus passive jobs and at baseline and over time using a job exposure matrix indicator. 4953 proteins in plasma samples were scanned. Follow-up of incident dementia varied between 13.7 to 30.1 years depending on the cohort. People with dementia were identified through linked electronic health records and repeated clinical examinations.
Results: During 1.8 million person years at risk, 1143 people with dementia were recorded. The risk of dementia was found to be lower for participants with high compared with low cognitive stimulation at work (crude incidence of dementia per 10 000 person years 4.8 in the high stimulation group and 7.3 in the low stimulation group, age and sex adjusted hazard ratio 0.77, 95% confidence interval 0.65 to 0.92, heterogeneity in cohort specific estimates I=0%, P=0.99). This association was robust to additional adjustment for education, risk factors for dementia in adulthood (smoking, heavy alcohol consumption, physical inactivity, job strain, obesity, hypertension, and prevalent diabetes at baseline), and cardiometabolic diseases (diabetes, coronary heart disease, stroke) before dementia diagnosis (fully adjusted hazard ratio 0.82, 95% confidence interval 0.68 to 0.98). The risk of dementia was also observed during the first 10 years of follow-up (hazard ratio 0.60, 95% confidence interval 0.37 to 0.95) and from year 10 onwards (0.79, 0.66 to 0.95) and replicated using a repeated job exposure matrix indicator of cognitive stimulation (hazard ratio per 1 standard deviation increase 0.77, 95% confidence interval 0.69 to 0.86). In analysis controlling for multiple testing, higher cognitive stimulation at work was associated with lower levels of proteins that inhibit central nervous system axonogenesis and synaptogenesis: slit homologue 2 (SLIT2, fully adjusted β -0.34, P<0.001), carbohydrate sulfotransferase 12 (CHSTC, fully adjusted β -0.33, P<0.001), and peptidyl-glycine α-amidating monooxygenase (AMD, fully adjusted β -0.32, P<0.001). These proteins were associated with increased dementia risk, with the fully adjusted hazard ratio per 1 SD being 1.16 (95% confidence interval 1.05 to 1.28) for SLIT2, 1.13 (1.00 to 1.27) for CHSTC, and 1.04 (0.97 to 1.13) for AMD.
Conclusions: The risk of dementia in old age was found to be lower in people with cognitively stimulating jobs than in those with non-stimulating jobs. The findings that cognitive stimulation is associated with lower levels of plasma proteins that potentially inhibit axonogenesis and synaptogenesis and increase the risk of dementia might provide clues to underlying biological mechanisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8372196 | PMC |
http://dx.doi.org/10.1136/bmj.n1804 | DOI Listing |
J Vis
January 2025
Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Aichi, Japan.
Humans can estimate the time and position of a moving object's arrival. However, numerous studies have demonstrated superior position estimation accuracy for descending objects compared with ascending objects. We tested whether the accuracy of position estimation for ascending and descending objects differs between the upper and lower visual fields.
View Article and Find Full Text PDFNeurol Sci
January 2025
International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
Objectives: Fibromyalgia imposes a considerable burden of disability worldwide, and its therapies include rehabilitation interventions. However, the overall brain modulatory effects of rehabilitation interventions and their effects on clinical improvements in patients with fibromyalgia remain unclear. This systematic review of magnetic resonance imaging studies synthesised evidence for the brain modulatory effects of rehabilitation in patients with fibromyalgia.
View Article and Find Full Text PDFFront Neurol
December 2024
Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States.
Introduction: The long-term effects of surgery for subthalamic nucleus deep brain stimulation (STN-DBS) on cognitive aspects of motor control for people with Parkinson's disease (PD) are largely unknown. We compared saccade latency and reach reaction time (RT) pre- and post-surgery while participants with PD were off-treatment.
Methods: In this preliminary study, we assessed people with PD approximately 1 month pre-surgery while OFF medication (OFF-MEDS) and about 8 months post-surgery while OFF medication and STN-DBS treatment (OFF-MEDS/OFF-DBS).
Front Psychol
December 2024
Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy.
Introduction: Among the tasks employed to investigate decisional processes, the Iowa Gambling Task (IGT) appears to be the most effective since it allows for deepening the progressive learning process based on feedback on previous choices. Recently, the study of decision making through the IGT has been combined with the application of transcranial direct current stimulation (tDCS) to understand the cognitive mechanisms and the neural structures involved. However, to date no review regarding the effects of tDCS on decisional processes assessed through the IGT is available.
View Article and Find Full Text PDFBiol Psychol
December 2024
Institute for Biomagnetism and Biosignal Analysis, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany, Krakow, 2024-12-28.
The ventromedial prefrontal cortex is widely linked with emotional phenomena, including appraisal, modulation, and reward processing. Its perigenual part is suggested to mediate the appetitive value of stimulation. In our previous study, besides changes in evoked MEG responses, we were able to induce an apparent behavioral bias toward more positive valence while interpreting the ambiguous, morphed faces after the effect of excitatory tDCS stimulation of the perigenual ventromedial cortex (pgVM).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!