The adenovirus (AdV) icosahedral capsid encloses a nucleoprotein core formed by the dsDNA genome bound to numerous copies of virus-encoded, positively charged proteins. For an efficient delivery of its genome, AdV must undergo a cascade of dismantling events from the plasma membrane to the nuclear pore. Throughout this uncoating process, the virion moves across potentially disruptive environments whose influence in particle stability is poorly understood. In this work we analyze the effect of acidic conditions on AdV particles by exploring their mechanical properties, genome accessibility and capsid disruption. Our results show that under short term acidification the AdV virion becomes softer and its genome less accessible to an intercalating dye, even in the presence of capsid openings. The AFM tip penetrates deeper in virions at neutral pH, and mechanical properties of genome-less particles are not altered upon acidification. Altogether, these results indicate that the main effect of acidification is the compaction of the nucleoproteic core, revealing a previously unknown role for chemical cues in AdV uncoating. STATEMENT OF SIGNIFICANCE: Studying the behavior of virus particles under changing environmental conditions is key to understand cell entry and propagation. One such change is the acidification undergone in certain cell compartments, which is thought to play a role in the programmed uncoating of virus genomes. Mild acidification in the early endosome has been proposed as a trigger signal for human AdV uncoating. However, the actual effect of low pH in AdV stability and entry is not well defined. Understanding the consequences of acidification in AdV structure and stability is also relevant to define storage conditions for therapeutic vectors, or design AdV variants resistant to intestinal conditions for oral administration of vaccines.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2021.08.019 | DOI Listing |
J Adv Res
January 2025
Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:
Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
J Adv Res
January 2025
Agronomy College / National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450046 China. Electronic address:
Introduction: High-density Wheat 660 K and 90 K SNP arrays are powerful tools for understanding the genetic basis of wheat traits. However, their inconsistantly physical positions that were caused by different versions of Chinese Spring genome during developing arrays are confused and inconvenient for further application.
Objective: With the repid development of wheat geonome sequencing, we aim to reconciliate Wheat 660 K and 90 K SNP arrays in modern cultivar and reveal the genetic basis of dough rheological properties in bread wheat.
J Adv Res
January 2025
Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Centre, Zunyi Medical University, Zunyi, Guizhou, China. Electronic address:
Background: Neurodegenerative diseases (NDs) constitute a significant public health challenge, as they are increasingly contributing to global mortality and morbidity, particularly among the elderly population. Pathogenesis of NDs is intricate and multifactorial. Recently, post-transcriptional modifications (PTMs) of RNA, with a particular focus on mRNA methylation, have been gaining increasing attention.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2025
Department of Biotechnology, School of Applied Sciences and Technology, BLDE (Deemed to be University), Bangaramma Sajjan Campus, Vijayapura 586103, India; Department of Basic Sciences, Faculty of Engineering and Technology, CMR University, Bangalore 562149, India. Electronic address:
Biosurfactants are biodegradable, non-toxic, and environmentally beneficial substances that are produced by microorganisms. Due to their chemical characteristics and stability in various environmental circumstances, biosurfactants are low-molecular-weight, surface-active molecules of great industrial importance. The choice of the producer microbe, kind of substrate, and purification technique determine the chemistry of a biosurfactant and its production cost.
View Article and Find Full Text PDFBiomater Adv
January 2025
Department of Ultrasound, Xijing Hospital, Fourth Military Medical University, No.127 Changle West Rd, 710032 Xi'an, Shaanxi, China. Electronic address:
Purpose: The objective of this study is to elucidate the sensitizing effect of mesoporous silica nanoparticles (MSNs) on shear wave elastography (SWE) and to investigate the potential application of MSNs as a sensitizer to enhance the sensitivity of SWE in the diagnosis of metabolic-associated steatohepatitis (MASH).
Materials And Methods: The in vitro gelatin models with varying ratios were assessed using SWE to identify the gelatin ratio that most closely approximates with human liver stiffness. Following the characterization of the dispersion properties of MSNs, in vitro models incorporating MSNs of different particle sizes were developed.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!