NGPF2 triggers synaptic scaling up through ALK-LIMK-cofilin-mediated mechanisms.

Cell Rep

Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada. Electronic address:

Published: August 2021

AI Article Synopsis

  • * This study reveals that TTX (a sodium channel blocker) treatment leads to a quick release of neurite growth-promoting factor 2 (NGPF2), which is essential for the synaptic scaling response.
  • * The research also finds that the signaling pathway involving ALK-LIMK-cofilin is necessary for NGPF2's role in synaptic scaling, which depends on protein synthesis and the presence of fragile X mental retardation protein 1 (FMRP1).

Article Abstract

Synaptic scaling is an extensively studied form of homeostatic plasticity critically involved in various brain functions. Although it is accepted that synaptic scaling is expressed through the postsynaptic accumulation of AMPA receptors (AMPARs), the induction mechanism remains elusive. In this study, we show that TTX treatment induces rapid but transient release of the neurite growth-promoting factor 2 (NGPF2), and this release is necessary and sufficient for TTX-induced scaling up. In addition, we show that inhibition of the anaplastic lymphoma kinase (ALK)-LIMK-cofilin signaling pathway blocks TTX- and NGPF2-induced synaptic scaling up. Furthermore, we show that TTX-induced release of NGPF2 is protein synthesis dependent and requires fragile X mental retardation protein 1 (FMRP1). These results indicate that activity blockade induces NGPF2 synthesis and release to trigger synaptic scaling up through LIMK-cofilin-dependent actin reorganization, spine enlargement, and stabilization of AMPARs at the synapse.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.celrep.2021.109515DOI Listing

Publication Analysis

Top Keywords

synaptic scaling
20
scaling
6
synaptic
5
ngpf2
4
ngpf2 triggers
4
triggers synaptic
4
scaling alk-limk-cofilin-mediated
4
alk-limk-cofilin-mediated mechanisms
4
mechanisms synaptic
4
scaling extensively
4

Similar Publications

Theory of morphodynamic information processing: Linking sensing to behaviour.

Vision Res

January 2025

Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK.

The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously.

View Article and Find Full Text PDF

Background: As humans age, some experience cognitive impairment while others do not. When impairment occurs, it varies in severity across individuals. Translationally relevant models are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to aging.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio De Janeiro, Rio de Janeiro, Brazil.

Background: Alzheimer's disease (AD) is the leading cause of dementia in elderly humans worldwide. More than 40 million people currently suffer from AD, and this prevalence tends to increase considerably in the coming decades due to increased longevity. The unfolded protein response (UPR) is an adaptive signaling mechanism that aims to maintain cell viability under misfolded protein accumulation and endoplasmic reticulum stress.

View Article and Find Full Text PDF

Background: Alzheimer's Disease is marked by the gradual aggregation of pathological proteins, Tau and beta-amyloid, throughout various areas of the brain. The progression of these pathologies follows a consistent pattern, impacting various cellular populations as it advances through each brain region. Previously, we used Bayesian algorithms to create a continuous progression score to mathematically capture the collective aggregation of multiple pathological variables within a specific brain region.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Protective brain barriers, such as blood-brain barrier, become dysfunctional with age. The BBB is a dynamic and selective barrier, gating the passage of molecules and cells to and from the brain. The function of this barrier is critical for the maintenance of brain homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!