MiR-590-5p inhibits pathological hypertrophy mediated heart failure by targeting RTN4.

J Mol Histol

Department of Cardiovascular Medicine, The Air Force Hospital From Eastern Theater, Qinhuai District, No. 1, Malu Street, Nanjing, 210001, Jiangsu, China.

Published: October 2021

Heart failure (HF) is a rising epidemic and public health burden in modern society. It is of great need to find new biomarkers to ensure a timely diagnosis and to improve treatment and prognosis of the disease. The mouse model of HF was established by thoracic aortic constriction. Color Doppler ultrasound was performed to detect left ventricular end-diastolic diameter. Hematoxylin and eosin staining was conducted to observe the pathological changes of mouse myocardium. The RT-qPCR analysis was performed to detect miR-590-5p and RTN4 expression levels. Western blot was conducted to detect protein levels of the indicated genes. We found that the expression of miR-590-5p was downregulated in cardiac tissues of HF mice. Injection of AAV-miR-590-5p attenuated myocardium hypertrophy and myocyte apoptosis. Additionally, miR-590-5p overexpression promoted viability, inhibited apoptosis, and decreased ANF, BNP and beta-MHC protein levels in H9c2 cell. Mechanistically, miR-590-5p binds to RTN4 3'-untranslated region, as predicted by starBase online database and evidenced by luciferase reporter assay. Furthermore, miR-590-5p negatively regulates RTN4 mRNA expression and suppresses its translation. The final rescue experiments revealed that miR-590-5p modulated cardiomyocyte phenotypes by binding to RTN4. In conclusion, miR-590-5p modulates myocardium hypertrophy and myocyte apoptosis in HF by downregulating RTN4.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10735-021-10009-xDOI Listing

Publication Analysis

Top Keywords

mir-590-5p
8
heart failure
8
performed detect
8
protein levels
8
myocardium hypertrophy
8
hypertrophy myocyte
8
myocyte apoptosis
8
rtn4
6
mir-590-5p inhibits
4
inhibits pathological
4

Similar Publications

Background: Increasing evidence suggests that circular RNA (circRNA) plays a regulatory role in the progression of renal cell carcinoma (RCC). However, the precise function and underlying mechanism of circSCNN1A in RCC progression still remain unclear.

Methods: The expression levels of circSCNN1A, microRNA-590-5p (miR-590-5p), claudin 8 (CLDN8), cyclin D1, matrix metalloprotein 2 (MMP2), MMP9, E-cadherin, N-cadherin and vimentin were detected by a quantitative real-time polymerase chain reaction and Western blotting analysis.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (OP) is a prevalent skeletal disease with not fully understood molecular mechanisms. This study aims to investigate the role of circular RNA (circRNA) in postmenopausal OP and to elucidate the potential mechanisms of the circRNA-miRNA-mRNA regulatory network. We obtained circRNA and miRNA expression profiles from postmenopausal OP patients from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Background: Intracranial aneurysms (IAs) represent protrusions in the vascular wall, with their growth and wall thinning influenced by various factors. These processes can culminate in the rupture of the aneurysm, leading to subarachnoid hemorrhage (SAH). Unfortunately, over half of the patients prove unable to withstand SAH, succumbing to adverse outcomes despite intensive therapeutic interventions, even in premier medical facilities.

View Article and Find Full Text PDF

Distinct miRNA expression patterns may reflect anomalies related to fetal congenital malformations such as spinal bifida (SB). The aim of this preliminary study was to determine the maternal miRNA expression profile of women carrying fetuses with SB. Therefore, six women carrying fetuses with SB and twenty women with euploid healthy fetuses were enrolled in this study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!