Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
If combined with renewably generated electricity, electrochemical CO reduction (E-COR) could be used as a sustainable source of chemicals and fuels. Tandem catalysis approaches are attractive for providing the product selectivity, which would be required for commercial applications. Here, we demonstrate a two-step tandem electrocatalytic E-COR with efficient conversion of the intermediate species. The catalyst scaffold is Si(100), which is etched to form a textured surface consisting of micron-sized pyramid structures with the {111} facets. Two metals are used in the electrocatalytic cascade: Ag is employed to perform a two-electron reduction of CO to the intermediate CO, and Cu performs conversion to more reduced products. Using high-angle physical vapor deposition, we form separated, micron-scale areas of the two electrocatalysts on opposite sides of the pyramids, with their relative surface coverages being tunable with the deposition angle. Compared to the textured scaffolds with blanket Ag and Cu used as controls, bimetallic pyramid tandem catalysts have higher current densities and much lower faradic efficiencies (FE) for CO. These effects are due to efficient conversion of the CO formed on Ag to more reduced products on Cu. Methane is the main product to be enhanced by the cascade pathway: a bimetallic catalyst with approximately equal coverages of Ag and Cu produces methane with a FE of 62% at -1.1 , corresponding to a partial current density of 12.7 mA cm. We estimate an intermediate conversion yield for the CO intermediate of 80-90%, which is close to the mass-transport limited value predicted by reaction-diffusion simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c08688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!