A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MRI pulse sequence integration for deep-learning-based brain metastases segmentation. | LitMetric

AI Article Synopsis

  • This study focuses on improving MRI segmentation for metastasis detection using deep learning, specifically addressing the challenge of integrating different pulse sequences effectively.
  • A 2.5D DeepLabv3 segmentation network is employed, exploring different integration methods and weight-sharing techniques to enhance robustness, allowing the model to function even with missing pulse sequences.
  • Results indicate that optimal integration strategies and a novel dropout layer lead to better performance on limited training data, and the trained model demonstrates generalizability when tested with data from another medical center.

Article Abstract

Purpose: Magnetic resonance (MR) imaging is an essential diagnostic tool in clinical medicine. Recently, a variety of deep-learning methods have been applied to segmentation tasks in medical images, with promising results for computer-aided diagnosis. For MR images, effectively integrating different pulse sequences is important to optimize performance. However, the best way to integrate different pulse sequences remains unclear. In addition, networks trained with a certain subset of pulse sequences as input are unable to perform when given a subset of those pulse sequences. In this study, we evaluate multiple architectural features and characterize their effects in the task of metastasis segmentation while creating a method to robustly train a network to be able to work given any strict subset of the pulse sequences available during training.

Methods: We use a 2.5D DeepLabv3 segmentation network to segment metastases lesions on brain MR's with four pulse sequence inputs. To study how we can best integrate MR pulse sequences for this task, we consider (1) different pulse sequence integration schemas, combining our features at early, middle, and late points within a deep network, (2) different modes of weight sharing for parallel network branches, and (3) a novel integration level dropout layer, which will allow the networks to be robust to performing inference on input with only a subset of pulse sequences available at the training.

Results: We find that levels of integration and modes of weight sharing that favor low variance work best in our regime of small amounts of training data (n = 100). By adding an input-level dropout layer, we could preserve the overall performance of these networks while allowing for inference on inputs with missing pulse sequences. We illustrate not only the generalizability of the network but also the utility of this robustness when applying the trained model to data from a different center, which does not use the same pulse sequences. Finally, we apply network visualization methods to better understand which input features are most important for network performance.

Conclusions: Together, these results provide a framework for building networks with enhanced robustness to missing data while maintaining comparable performance in medical imaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.15136DOI Listing

Publication Analysis

Top Keywords

pulse sequences
36
subset pulse
16
pulse sequence
12
pulse
11
sequences
9
sequence integration
8
best integrate
8
integrate pulse
8
modes weight
8
weight sharing
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!