Role of IL-6 in dendritic cell functions.

J Leukoc Biol

Shanghai Research Institute of Acupuncture and Meridian, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.

Published: March 2022

Dendritic cells (DCs) are efficient antigen-presenting cells that serve as a link between the innate and adaptive immune systems. These cells are broadly involved in cellular and humoral immune responses by presenting antigens to initiate T cell reactions, cytokine and chemokine secretion, T cell differentiation and expansion, B cell activation and regulation, and the mediation of immune tolerance. The functions of DCs depend on their activation status, which is defined by the stages of maturation, phenotype differentiation, and migration ability, among other factors. IL-6 is a soluble mediator mainly produced by a variety of immune cells, including DCs, that exerts pleiotropic effects on immune and inflammatory responses through interaction with specific receptors expressed on the surface of target cells. Here, we review the role of IL-6, when generated in an inflammatory context or as derived from DCs, in modulating the biologic function and activation status of DCs and emphasize the importance of searching for novel strategies to target the IL-6/IL-6 signaling pathway as a means to diminish the inflammatory activity of DCs in immune response or to prime the immunogenic activity of DCs in immunosuppressive conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1002/JLB.3MR0621-616RRDOI Listing

Publication Analysis

Top Keywords

role il-6
8
activation status
8
activity dcs
8
dcs
7
immune
6
cells
5
il-6 dendritic
4
cell
4
dendritic cell
4
cell functions
4

Similar Publications

SLAMF8 Disrupts Epithelial Barrier in Chronic Rhinosinusitis with Nasal Polyps via M1 Macrophage Polarization.

Ann Allergy Asthma Immunol

January 2025

Department of Otorhinolaryngology Head and Neck Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China. Electronic address:

Background: Recent studies show that M1 macrophages accumulate predominantly in non-eosinophilic chronic rhinosinusitis with nasal polyps (neCRSwNP). However, the precise mechanisms regulating M1 macrophages and their impact on the epithelial barrier remain unclear.

Objective: We aim to investigate the expression and regulatory role of SLAMF8, a molecule exclusively expressed in myeloid cells, in M1 macrophage polarization and its potential contribution to neCRSwNP development.

View Article and Find Full Text PDF

Purpose: We downloaded the gene expression profiles of patients with diabetic nephropathyfrom the GEO database and combined it with differential gene analysis of rat transcriptome,our study employed animal models to examine the role of key hub genes in diabetic nephropathy and to pinpoint significant gene regulation in this disease.

Methods: An examination of differential expression was performed using the online analysis tool GEO2R and the DN-related datasets GSE30528 and GSE1009 obtained from the GEO database. A comparison of gene expression between the normal and diabetic nephropathy groups was conducted using the RNA-seq technique.

View Article and Find Full Text PDF

Objectives: Diabetes mellitus is a chronic disease that has become more prevalent worldwide because of lifestyle changes. It leads to serious complications, including increased atherosclerosis, protein glycosylation, endothelial dysfunction, and vascular denervation. These complications impair neovascularization and wound healing, resulting in delayed recovery from injuries and an elevated risk of infections.

View Article and Find Full Text PDF

Unlabelled: Dendritic cells (DCs) are key regulators of adaptive immunity, guiding T helper (Th) cell differentiation through antigen presentation, co-stimulation, and cytokine production. However, in steady-state conditions, certain DC subsets, such as Langerhans cells (LCs), induce T follicular helper (Tfh) cells and B cell responses without inflammatory stimuli. Using multiple mouse models and systems, we investigated the mechanisms underlying steady-state LC-induced adaptive immune responses.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD), an X-linked neuromuscular disorder, characterised by progressive immobility, chronic inflammation and premature death, is caused by the loss of the mechano-transducing signalling molecule, dystrophin. In non-contracting cells, such as neurons, dystrophin is likely to have a functional role in synaptic plasticity, anchoring post-synaptic receptors. Dystrophin-expressing hippocampal neurons are key to cognitive functions such as emotions, learning and the consolidation of memories.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!