High-harmonic generation is a cornerstone of nonlinear optics. It has been demonstrated in dielectrics, semiconductors, semi-metals, plasmas, and gases, but, until now, not in metals. Here we report high harmonics of 800-nm-wavelength light irradiating metallic titanium nitride film. Titanium nitride is a refractory metal known for its high melting temperature and large laser damage threshold. We show that it can withstand few-cycle light pulses with peak intensities as high as 13 TW/cm, enabling high-harmonics generation up to photon energies of 11 eV. We measure the emitted vacuum ultraviolet radiation as a function of the crystal orientation with respect to the laser polarization and show that it is consistent with the anisotropic conduction band structure of titanium nitride. The generation of high harmonics from metals opens a link between solid and plasma harmonics. In addition, titanium nitride is a promising material for refractory plasmonic devices and could enable compact vacuum ultraviolet frequency combs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371016PMC
http://dx.doi.org/10.1038/s41467-021-25224-zDOI Listing

Publication Analysis

Top Keywords

titanium nitride
20
high-harmonic generation
8
metallic titanium
8
high harmonics
8
vacuum ultraviolet
8
titanium
5
nitride
5
generation metallic
4
nitride high-harmonic
4
generation cornerstone
4

Similar Publications

3D Vertical Ferroelectric Capacitors with Excellent Scalability.

Nano Lett

January 2025

Division of Electronics and Electrical Engineering, Dongguk University, Seoul 04620, South Korea.

Three-dimensional vertically stacked memory is more cost-effective than two-dimensional stacked memory. Vertically stacked memory using ferroelectric materials has great potential not only in high-density memory but also in neuromorphic fields because it secures low voltage and fast operation speed. This paper presents the implementation of a ferroelectric capacitor comprising a vertical two-layer stacked structure composed of a titanium nitride (TiN)/aluminum-doped hafnium oxide/TiN configuration.

View Article and Find Full Text PDF

Fabrication and Coating of Porous Ti6Al4V Structures for Application in PEM Fuel Cell and Electrolyzer Technologies.

Materials (Basel)

December 2024

Department of Material Science and Engineering, Universidad Carlos III de Madrid, IAAB, 28911 Leganés, Madrid, Spain.

The production of green hydrogen through proton exchange membrane water electrolysis (PEMWE) is a promising technology for industry decarbonization, outperforming alkaline water electrolysis (AWE). However, PEMWE requires significant investment, which can be mitigated through material and design advancements. Components like bipolar porous plates (BPPs) and porous transport films (PTFs) contribute substantially to costs and performance.

View Article and Find Full Text PDF

Evolution of Chemical, Structural, and Mechanical Properties of Titanium Nitride Films with Different Thicknesses Fabricated Using Pulsed DC Magnetron Sputtering.

Materials (Basel)

December 2024

MOE Key Laboratory of Advanced Micro-Structured Materials, Institute of Precision Optical Engineering (IPOE), School of Physics Science and Engineering, Tongji University, Shanghai 200092, China.

Considering the application of titanium nitride (TiN) films as a release layer in producing Wolter-I X-ray telescope mirror shells by the electroformed nickel replication (ENR) technique, this research pays attention to the influence of nanometer-scale thickness variation in the microstructure and physical properties of TiN films deposited by the pulsed direct current (DC) magnetron sputtering method. This topic has received limited attention in the existing literature. TiN films (9.

View Article and Find Full Text PDF

Titanium nitride sensor for selective NO detection.

Nat Commun

January 2025

School of Environmental Science and Technology, Dalian University of Technology, Dalian, China.

Efficient detection methods are needed to monitor nitrogen dioxide (NO), a major NO pollutant from fossil fuel combustion that poses significant threats to both ecology and human health. Current NO detection technologies face limitations in stability and selectivity. Here, we present a transition metal nitride sensor that exhibits exceptional selectivity for NO, demonstrating a sensitivity 30 times greater than that of the strongest interfering gas, NO.

View Article and Find Full Text PDF

The contributed absorber design in graphene addition with the displacement of three materials for resonator design in Aluminum (Al), the middle substrate position with Titanium nitride (TiN), and the ground layer deposition by Iron (Fe) respectively. For the absorption validation highlight, the best four absorption wavelengths (µm) of 0.29, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!