Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids.

Nat Commun

Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.

Published: August 2021

AI Article Synopsis

  • Researchers used CRISPR interference and omics analyses to find and engineer genes that enhance free fatty acid production in E. coli.
  • They identified 30 beneficial genes through genetic perturbations and discovered an additional 26 genes unrelated to fatty acid metabolism by analyzing FFAs-overproducing strains.
  • By combining changes in four specific genes related to cellular stress responses, they created a new strain that achieved a record-high free fatty acid production of 30.0 g/L in fermentation.

Article Abstract

To construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfA-aidB-ryfA-gadA, producing 30.0 g L FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371096PMC
http://dx.doi.org/10.1038/s41467-021-25243-wDOI Listing

Publication Analysis

Top Keywords

beneficial genes
16
escherichia coli
8
high-titer production
8
free fatty
8
fatty acids
8
omics analyses
8
identification beneficial
8
ffa metabolism
8
beneficial
5
genome-scale target
4

Similar Publications

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

Epitranscriptomic modifications on RNA play critical roles in stability, processing, and function, partly by influencing interactions with RNA-binding proteins and receptors. The role of post-transcriptional RNA modifications on cell-free non-coding small RNA (sRNA) remains poorly understood in disease contexts. High-density lipoproteins (HDL), which transport sRNAs, can lose their beneficial properties in atherosclerosis cardiovascular disease (ASCVD).

View Article and Find Full Text PDF

Plants recognize a variety of environmental molecules, thereby triggering appropriate responses to biotic or abiotic stresses. Substances containing microbes-associated molecular patterns (MAMPs) and damage-associated molecular patterns (DAMPs) are representative inducers of pathogen resistance and damage repair, thus treatment of healthy plants with such substances can pre-activate plant immunity and cell repair functions. In this study, the effects of DAMP/MAMP oligosaccharides mixture (Oligo-Mix) derived from plant cell wall (cello-oligosaccharide and xylo-oligosaccharide), and fungal cell wall (chitin-oligosaccharide) were examined in cucumber.

View Article and Find Full Text PDF

Starvation, intermittent fasting and exercise, all of which are recommended lifestyle modifiers share a common metabolic signature, ketogenesis to generate the ketone bodies, predominantly β-hydroxybutyrate. β-hydroxybutyrate exerts beneficial effects across various contexts, preventing or mitigating disease. We hypothesized that these dynamic health benefits of β-hydroxybutyrate might stem from its ability to regulate genome architecture through chromatin remodeling via histone β-hydroxybutyrylation, thereby influencing the transcriptome.

View Article and Find Full Text PDF

The diverse microbiota of the intestine is expected to benefit the host, yet the beneficial metabolites derived from the microbiota are still poorly understood. Enterobactin (Ent) is a well- known secreted iron-scavenging siderophore made by bacteria to fetch iron from the host or environment. Little was known about a positive role of Ent until a recent discovery in the nematode indicated a beneficial role of Ent in promoting mitochondrial iron level in the animal intestine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!