Neural electrodes are primary functional elements of neuroelectronic devices designed to record neural activity based on electrochemical signals. These electrodes may also be utilized for electrically stimulating the neural cells, such that their response can be simultaneously recorded. In addition to being medically safe, the electrode material should be electrically conductive and electrochemically stable under harsh biological environments. Mechanical flexibility and conformability, resistance to crack formation and compatibility with common microfabrication techniques are equally desirable properties. Traditionally, (noble) metals have been the preferred for neural electrode applications due to their proven biosafety and a relatively high electrical conductivity. Carbon is a recent addition to this list, which is far superior in terms of its electrochemical stability and corrosion resistance. Carbon has also enabled 3D electrode fabrication as opposed to the thin-film based 2D structures. One of carbon's peculiar aspects is its availability in a wide range of allotropes with specialized properties that render it highly versatile. These variations, however, also make it difficult to understand carbon itself as a unique material, and thus, each allotrope is often regarded independently. Some carbon types have already shown promising results in bioelectronic medicine, while many others remain potential candidates. In this topical review, we first provide a broad overview of the neuroelectronic devices and the basic requirements of an electrode material. We subsequently discuss the carbon family of materials and their properties that are useful in neural applications. Examples of devices fabricated using bulk and nano carbon materials are reviewed and critically compared. We then summarize the challenges, future prospects and next-generation carbon technology that can be helpful in the field of neural sciences. The article aims at providing a common platform to neuroscientists, electrochemists, biologists, microsystems engineers and carbon scientists to enable active and comprehensive efforts directed towards carbon-based neuroelectronic device fabrication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1741-2552/ac1e45 | DOI Listing |
Micromachines (Basel)
December 2024
Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI & Robotics, Academy for Engineering & Technology, Fudan University, Shanghai 200433, China.
Minimally invasive endovascular stent electrodes are an emerging technology in neural engineering, designed to minimize the damage to neural tissue. However, conventional stent electrodes often rely on resistive welding and are relatively bulky, restricting their use primarily to large animals or thick blood vessels. In this study, the feasibility is explored of fabricating a laser welding stent electrode as small as 300 μm.
View Article and Find Full Text PDFDiagnostics (Basel)
January 2025
Science and Research Centre, School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia.
The selection of an optimal referencing method in event-related potential (ERP) research has been a long-standing debate, as it can significantly influence results and lead to data misinterpretation. Such misinterpretation can produce flawed scientific conclusions, like the inaccurate localization of neural processes, and in practical applications, such as using ERPs as biomarkers in medicine, it may result in incorrect diagnoses or ineffective treatments. In line with the development and advancement of good scientific practice (GSP) in ERP research, this study sought to address several questions regarding the most suitable digital reference for investigating the N400 ERP component.
View Article and Find Full Text PDFTransl Stroke Res
January 2025
Department of Rehabilitation Sciences, KU Leuven, B-3001, Leuven, Belgium.
Electroencephalogram (EEG) during pinprick stimulation has the potential to unveil neural mechanisms underlying sensorimotor impairments post-stroke. A proof-of-concept study explored event-related peak pinprick amplitude and oscillatory responses in healthy controls and in people with acute and subuacute motor and sensorimotor stroke, their relationship, and to what extent EEG somatosensory responses can predict sensorimotor impairment. In this study, 26 individuals participated, 10 people with an acute and early subacute sensorimotor stroke, 6 people with an acute and early subacute motor stroke, and 10 age-matched controls.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju 61186, Republic of Korea.
This study investigates the modulatory effects of nicergoline, a major bioactive compound derived from ergot fungus, on the 5-hydroxytryptamine 3A (5-HT3A) receptor. Utilizing a two-electrode voltage-clamp technique, we evaluated the impact of nicergoline on the 5-HT-induced inward current (I) in 5-HT3A receptors. Our findings reveal that nicergoline inhibits I in a reversible and concentration-dependent manner.
View Article and Find Full Text PDFJ Neural Eng
January 2025
School of Informatics, The University of Edinburgh, 10 Chricton Street, Edinburgh, EH8 9LE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Objective: Electromyographic (EMG) signals show large variabilities over time due to factors such as electrode shifting, user behaviour variations, etc., substantially degrading the performance of myoelectric control models in long-term use. Previously one-time model calibration was usually required each time before usage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!