The work explored the process of ultrasound-assisted adsorption/desorption to efficiently purify jujube peel flavonoids (JPFs) using macroporous resins (MRs). The impact of ultrasound power and temperature on the adsorption/desorption features of JPFs on MRs were studied. The maximum adsorption (80.21 ± 2.11 mg/g) /desorption (76.22 ± 1.68 mg/g) capacity of total flavonoids content were obtained. The pseudo-second-order kinetic and Freundlich isotherm models better described the whole process of ultrasound-assisted adsorption. The adsorption process was spontaneous, physical, and dominated by multilinear intraparticle diffusion. Ultrasound mainly enhanced the adsorption capacity by strengthening the formation of hydrogen bonds and increasing the surface roughness of MRs. Besides, the principal individual flavonoid ((+)-Catechin, (-)-Epicatechin, Rutin, Quercetin-3-O-robinobioside) content of JPFs in ultrasound treatment was 2-3 times that of shaking treatment, and biological activities were significantly increased. Overall, as a low-cost green technology, ultrasound can improve the properties of MRs and better purify JPFs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2021.130800DOI Listing

Publication Analysis

Top Keywords

ultrasound-assisted adsorption/desorption
8
jujube peel
8
peel flavonoids
8
macroporous resins
8
process ultrasound-assisted
8
adsorption/desorption jujube
4
flavonoids macroporous
4
resins work
4
work explored
4
explored process
4

Similar Publications

Green valorization of Chaenomelis Fructus agro-industrial by-products as a source of phenolics: Ultrasound-assisted extraction, adsorptive enrichment and quality control.

Food Chem

January 2025

Centre for Chinese Herbal Medicine Drug Development, Hong Kong Baptist University, Hong Kong 999077, PR China; School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, PR China. Electronic address:

This study aimed to develop a green and efficient strategy for the recovery of bioactive phenolics from agro-industrial by-products (AIBPs) derived from Chaenomelis Fructus (CF). The peel of Chaenomelis Fructus (CFP) has a higher phenolic content compared to its leaves and seeds. The ultrasound-assisted extraction process for CFP total phenolics (CFPTP) was optimized using response surface methodology, achieving a yield of 216.

View Article and Find Full Text PDF

Many initiatives have incorporated graphene oxide (GO) and biomass into aerogels for wastewater treatment. We report on the facile fabrication of a magnetic GO/FeO/banana peel-derived cellulose (bio-cellulose) aerogel using an ultrasound-assisted mechanical mixing method and freeze-drying technique for the removal of tetracycline (TC). The component materials and composite aerogel were characterized using Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), Raman spectroscopy, field-emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), nitrogen adsorption-desorption analysis, and vibrating sample magnetometry (VSM).

View Article and Find Full Text PDF

Ultrasound-assisted rapid growth of chemically bonded bifunctional mesoporous covalent organic framework submicrospheres on a nickel-chromium alloy support for efficient solid-phase microextraction of bisphenols from water and milk samples.

J Chromatogr A

November 2024

College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China; Key Lab of Bioelectrochemistry & Environmental Analysis of Gansu, Lanzhou 730070, China. Electronic address:

A layer-by-layer chemical bonding strategy was developed for fast in situ growth of bifunctional mesoporous covalent organic framework submicrospheres (COF SMSs) on the nickel-chromium alloy (Ni-Cr) fiber substrate via the ultrasound-assisted Schiff-base reaction for the first time. COF SMSs showed well-defined morphology, extraordinary high surface area (1211 m·g) and narrow mesopore (2.50 nm) as well as excellent stability.

View Article and Find Full Text PDF

Purpose: In this study, wound dressings were designed using zinc-modified marine collagen porous scaffold as host for wild bilberry (WB) leaves extract immobilized in functionalized mesoporous silica nanoparticles (MSN). These new composites were developed as an alternative to conventional wound dressings. In addition to the antibacterial activity of classic antibiotics, a polyphenolic extract could act as an antioxidant and/or an anti-inflammatory agent as well.

View Article and Find Full Text PDF

Presently, there are several issues associated with solid waste fly ash, such as its accumulation and storage, low comprehensive utilization rate, lack of high-value utilization technology, environmental risk and ecological impact. Thus, based on the high silica content and adsorption characteristics of fly ash, two novel adsorbents, namely mesoporous silica-based material (MSM) and sodium dodecyl sulfate-modified fly ash (SDS-FA), were prepared using an ultrasound-assisted alkali fusion-hydrothermal method and surface modification method. Furthermore, effects of adsorbent dosage, initial pH, contact time, and initial concentration of the solution on the adsorption of the organic pollutant methylene blue (MB) by fly ash, MSM, and SDS-FA were investigated to select the optimal modified high silica fly ash adsorbent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!