The identification of ruthenium(II) polypyridyl complexes as photosensitizers in photodynamic therapy (PDT) for the treatment of cancer is progressing rapidly. Due to their favorable photophysical and photochemical properties, Ru(II)-based photosensitizers have absorption in the visible spectrum, can be irradiated via one- and two-photon excitation within the PDT window, and yield potent oxygen-dependent and/or oxygen-independent photobiological activities. Herein, we present a current overview of the mechanisms of action and subcellular localization of Ru(II)-based photosensitizers in the treatment of cancer. These photosensitizers are highlighted from a medicinal chemistry and chemical biology perspective. However, although this field is burgeoning, challenges and limitations remain in the photosensitization strategies and clinical translation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmech.2021.113770 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!