Structural and biochemical insights into a hyperthermostable urate oxidase from Thermobispora bispora for hyperuricemia and gout therapy.

Int J Biol Macromol

Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan; Department of Agricultural Chemistry, National Taiwan University, Taipei 10617, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 10617, Taiwan. Electronic address:

Published: October 2021

Microbial urate oxidase has emerged as a potential source of therapeutic properties for hyperuricemia in arthritic gout and renal disease. The thermostability and long-term thermal tolerance of the enzyme need to be established to prolong its therapeutic effects. Here, we present the biochemical and structural aspects of a hyperthermostable urate oxidase (TbUox) from the thermophilic microorganism Thermobispora bispora. Enzymatic characterization of TbUox revealed that it was active over a wide range of temperatures, from 30 to 70 °C, with optimal activity at 65 °C and pH 8.0, which suggests its applicability under physiological conditions. Moreover, TbUox exhibits high thermostability from 10 to 65 °C, with Tm of 70.3 °C and near-neutral pH stability from pH 7.0 to 8.0 and high thermal tolerance. The crystal structures of TbUox revealed a distinct feature of the C-terminal loop extensions that may help with protein stability via inter-subunit interactions. In addition, the high thermal tolerance of TbUox may be contributed by the extensive inter-subunit contacts via salt bridges, hydrogen bonds, and hydrophobic interactions. The findings in this study provide a molecular basis for the thermophilic TbUox urate oxidase for application in hyperuricemia and gout therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.08.081DOI Listing

Publication Analysis

Top Keywords

urate oxidase
16
thermal tolerance
12
hyperthermostable urate
8
thermobispora bispora
8
hyperuricemia gout
8
gout therapy
8
tbuox revealed
8
high thermal
8
tbuox
6
structural biochemical
4

Similar Publications

Unveiling the Emerging Role of Xanthine Oxidase in Acute Pancreatitis: Beyond Reactive Oxygen Species.

Antioxidants (Basel)

January 2025

Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.

Acute pancreatitis (AP) is a potentially fatal acute digestive disease that is widespread globally. Although significant progress has been made in the previous decade, the study of mechanisms and therapeutic strategies is still far from being completed. Xanthine oxidase (XO) is an enzyme that catalyzes hypoxanthine and xanthine to produce urate and is accompanied by the generation of reactive oxygen species (ROS) in purine catabolism.

View Article and Find Full Text PDF

Gout is a disease caused by the deposit of monosodium urate (MSU) crystals that produce joint inflammation and subcutaneous nodules (tophi). The treatment of gout aims to reduce serum uric acid (sUA) levels by administering urate-lowering therapies (ULT) such as xanthine oxidase inhibitors (XOI: allopurinol, febuxostat) or uricosurics (e.g.

View Article and Find Full Text PDF

Serum uric acid is an end-product of purine metabolism. Uric acid concentrations in excess of the physiological range may lead to diseases such as gout, cardiovascular disease, and kidney injury. The kidney includes a variety of cell types with specialized functions such as fluid and electrolyte homeostasis, detoxification, and endocrine functions.

View Article and Find Full Text PDF

Enzyme cascade nanozyme based colorimetric sensor for detection of uric acid as a biomarker of hyperuricemia.

Mikrochim Acta

January 2025

Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China.

A Cr-doped VO nanobelt (Cr/VO) with remarkable peroxidase-like activity was synthesized and coupled with uricase to catalyze the cascade reaction for  detection of uric acid. Notably, the affinity of Cr/VO for 3,3',5,5'-tetramethylbenzidine dihydrochloride hydrate (TMB) and hydrogen peroxide (HO) is tenfold and 20-fold higher, respectively, than that of horseradish peroxidase (HRP). The Cr/VO exhibits highly reactive and stable peroxidase activity at temperatures of 20-60 ℃.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!