The enucleated vascular elements of the xylem and the phloem offer an excellent system to test the effect of ploidy on plant function because variation in vascular geometry has a direct influence on transport efficiency. However, evaluations of conduit sizes in polyploid plants have remained elusive, most remarkably in woody species. We used a combination of molecular, physiological and microscopy techniques to model the hydraulic resistance between source and sinks in tetraploid and diploid mango trees. Tetraploids exhibited larger chloroplasts, mesophyll cells and stomatal guard cells, resulting in higher leaf elastic modulus and lower dehydration rates, despite the high water potentials of both ploidies in the field. Both the xylem and the phloem displayed a scaling of conduits with ploidy, revealing attenuated hydraulic resistance in tetraploids. Conspicuous wall hygroscopic moieties in the cells involved in transpiration and transport indicate a role in volumetric adjustments as a result of turgor change in both ploidies. In autotetraploids, the enlargement of organelles, cells and tissues, which are critical for water and photoassimilate transport at long distances, point to major physiological novelties associated with whole-genome duplication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.15460 | DOI Listing |
BMC Plant Biol
January 2025
Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, P. O. Box 17719-14911, Tehran, Iran.
Selenium (Se) plays a crucial role in ameliorating the negative impact of abiotic stress. The present study was performed to elucidate the efficacy of soil treatment of Se in reducing salt-induced stress in Carthamus tinctorius L. In this study, three different levels of NaSeO (0, 0.
View Article and Find Full Text PDFPlant Commun
January 2025
Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51, Uppsala, Sweden. Electronic address:
Plants possess remarkable regenerative abilities to form de novo vasculature after damage and in response to pathogens that invade and withdraw nutrients. To look for common factors that affect vascular formation upon stress, we searched for Arabidopsis thaliana genes differentially expressed upon Agrobacterium infection, nematode infection and plant grafting. One such gene was cell wall related and highly induced by all three stresses and was named ENHANCED XYLEM AND GRAFTING1 (EXG1) since mutations in it promoted ectopic xylem formation in Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL) and enhanced graft formation.
View Article and Find Full Text PDFPhytochem Anal
January 2025
Rehabilitation Pharmacy Center, Affiliated Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China.
Introduction: Angelica sinensis is one of the most popular traditional Chinese medicines (TCM) and has been extensively used to treat various diseases. Hundreds of endogenous ingredients have been isolated and identified from this herb, but their spatial distribution within the plant root is largely unknown.
Objectives: In this study, we tried to investigate and map within-tissue spatial distribution of metabolites in Angelica sinensis roots.
J Hazard Mater
January 2025
School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Environmental Science and Engineering, Hainan University, Haikou 570228, China. Electronic address:
Microbe-Assisted Phytoremediation (MAP) is an eco-friendly method for remediating soil contaminated with heavy metals such as cadmium (Cd) and chromium (Cr). This study demonstrates the potential of a king grass-Serratia marcescens strain S27 (KS) co-symbiotic system to enhance heavy metal remediation. The KS symbiosis increased the biomass of king grass by 48 % and enhanced the accumulation of Cd and Cr in the whole plant by 2.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biotechnology, Institute of Resource Biology and Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
Hemp fibers, recognized for their breathability, specific strength, and ultraviolet resistance, are widely utilized in textile manufacturing and composite materials. Bio-degumming is a promising alternative technology to traditional chemical degumming that can be used to produce hemp fibers due to its eco-friendly nature. However, its lower efficiency has hindered its widespread adoption.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!