AbstractStudents of speciation debate the role of performance trade-offs across different environments early in speciation. We tested for early performance trade-offs with a host shift experiment using a member of the species complex of treehoppers (Hemiptera: Membracidae). In this clade of plant-feeding insects, different species live on different host plants and exhibit strong behavioral and physiological host specialization. After five generations, the experimental host shifts resulted either in no adaptation or in adaptation without specialization. The latter result was more likely in sympatry; in allopatry, populations on novel host plants were more likely to become extinct. We conclude that in the early stages of speciation, adaptation to novel host plants does not necessarily bring about performance trade-offs on ancestral environments. Adaptation may be facilitated rather than hindered by gene flow, which prevents extinction. Additional causes of specialization and assortative mating may be required if colonization of novel environments is to result in speciation.

Download full-text PDF

Source
http://dx.doi.org/10.1086/715629DOI Listing

Publication Analysis

Top Keywords

performance trade-offs
12
host plants
12
adaptation specialization
8
host shift
8
novel host
8
host
7
adaptation
5
early
4
specialization early
4
early host
4

Similar Publications

Analyses of form-function relationships are widely used to understand links between morphology, ecology, and adaptation across macroevolutionary scales. However, few have investigated functional trade-offs and covariance within and between the skull, limbs, and vertebral column simultaneously. In this study, we investigated the adaptive landscape of skeletal form and function in carnivorans to test how functional trade-offs among these skeletal regions contribute to ecological adaptations and the topology of the landscape.

View Article and Find Full Text PDF

The resolution of extensive-form zero-sum games is a fundamental challenge in computational game theory, addressed through various algorithms, each with unique strengths and limitations. This paper presents a comprehensive comparison of leading algorithms, using Poker-like games as benchmarks to assess their performance. For each algorithm, optimal parameters were identified, and evaluations were conducted based on exploitability, average utility, iterations per second, convergence speed, and scalability.

View Article and Find Full Text PDF

Local Climate Might Amplify Economic and Environmental Impacts of Electric Vehicles in China.

Environ Sci Technol

January 2025

Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China.

Electric vehicles (EVs) are crucial for addressing the intertwined challenges of climate change and air pollution. The multiaspect benefits of EVs are highly dependent on local climate conditions, yet the impacts of regional heterogeneity in the context of future climate change remain unclear. Here, we develop a systemic modeling framework integrating fleet modeling, emission projection, index decomposition analysis, and detailed cost assessment to identify local drivers and potential trade-offs behind electrification.

View Article and Find Full Text PDF

Optimizing process and heat-treatment parameters of laser powder bed fusion for producing Ti-6Al-4V alloys with high strength and ductility is crucial to meet performance demands in various applications. Nevertheless, inherent trade-offs between strength and ductility render traditional trial-and-error methods inefficient. Herein, we present Pareto active learning framework with targeted experimental validation to efficiently explore vast parameter space of 296 candidates, pinpointing optimal parameters to augment both strength and ductility.

View Article and Find Full Text PDF

Fluorine-free organic framework polyelectrolyte membranes showing near frictionless ionic conductivities are gaining cognitive insights. However, the co-precipitation of COFs in the membranes often brings trade-offs to commission long-life electrochemical energy storage solutions. Herein, a durable and ionically miscible dual-ion exchange membrane based on triazine organic framework (TOF) is designed for alkaline redox flow batteries (RFB).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!