The sudden emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) has caused global panic in 2003, and the risk of SARS-CoV outbreak still exists. However, no specific antiviral drug or vaccine is available; thus, the development of therapeutic antibodies against SARS-CoV is needed. In this study, a nanobody phage-displayed library was constructed from peripheral blood mononuclear cells of alpacas immunized with the recombinant receptor-binding domain (RBD) of SARS-CoV. Four positive clones were selected after four rounds of bio-panning and subjected to recombinant expression in E. coli. Further biological identification demonstrated that one of the nanobodies, S14, showed high affinity to SARS-CoV RBD and potent neutralization activity at the picomole level against SARS-CoV pseudovirus. A competitive inhibition assay showed that S14 blocked the binding of SARS-CoV RBD to either soluble or cell-expressed angiotensin-converting enzyme 2 (ACE2). In summary, we developed a novel nanobody targeting SARS-CoV RBD, which might be useful for the development of therapeutics against SARS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8369142 | PMC |
http://dx.doi.org/10.1007/s12250-021-00436-1 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Suzhou CureMed Biopharma Technology Co., Ltd., Suzhou 215125, China.
The emergence of mRNA vaccines offers great promise and a potent platform in combating various diseases, notably COVID-19. Nevertheless, challenges such as inherent instability and potential side effects of current delivery systems underscore the critical need for the advancement of stable, safe, and efficacious mRNA vaccines. In this study, a robust mRNA vaccine (cmRNA-1130) eliciting potent immune activation has been developed from a biodegradable lipid with eight ester bonds in the branched tail (AX4) and synthetic circular mRNA (cmRNA) encoding the trimeric Delta receptor binding domain of the SARS-CoV-2 spike protein.
View Article and Find Full Text PDFToxicon
January 2025
Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran. Electronic address:
SARS-CoV-2 is from the enveloped virus family responsible for the COVID-19 pandemic. No efficient drugs are currently available to treat infection explicitly caused by this virus. Therefore, searching for effective treatments for severe illness caused by SARS-CoV-2 is crucial.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS) and Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai, China.
Vaccines are widely regarded as one of the most effective strategies for combating infectious diseases. However, significant challenges remain, such as insufficient antibody levels, limited protection against rapidly evolving variants, and poor immune durability, particularly in subunit vaccines, likely due to their short in vivo exposure. Recent advances in extending the half-life of protein therapeutics have shown promise in improving drug efficacy, yet whether increasing in vivo persistence can enhance the efficacy of subunit vaccines remains underexplored.
View Article and Find Full Text PDFJ Virol
January 2025
State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Science, Wuhan, China.
Unlabelled: The emergence of novel variants of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to pose an ongoing challenge for global public health services, highlighting the urgent need for effective therapeutic interventions. Neutralizing monoclonal antibodies (mAbs) are a major therapeutic strategy for the treatment of COVID-19 and other viral diseases. In this study, we employed hybridoma technology to generate mAbs that target the BA.
View Article and Find Full Text PDFViruses
December 2024
The Sheba Pandemic Preparedness Research Institute (SPRI), Sheba Medical Center, Tel Hashomer, Ramat Gan 52621, Israel.
Background/objectives: Millions of individuals worldwide continue to experience symptoms following SARS-CoV-2 infection. This study aimed to assess the prevalence and phenotype of multi-system symptoms attributed to Long COVID-including fatigue, pain, cognitive-emotional disturbances, headache, cardiopulmonary issues, and alterations in taste and smell-that have persisted for at least two years after acute infection, which we define as "persistent Long COVID". Additionally, the study aimed to identify clinical features and blood biomarkers associated with persistent Long COVID symptoms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!