Plants strive for phosphorus (P), which is an essential mineral for their life. Since P availability is limiting in most of the world's soils, plants have evolved with a complex network of genes and their regulatory mechanisms to cope with soil P deficiency. Among them, purple acid phosphatases (PAPs) are predominantly associated with P remobilization within the plant and acquisition from the soil by hydrolyzing organic P compounds. P in such compounds remains otherwise unavailable to plants for assimilation. PAPs are ubiquitous in plants, and similar enzymes exist in bacteria, fungi, mammals, and unicellular eukaryotes, but having some differences in their catalytic center. In the recent past, PAPs' roles have been extended to multiple plant processes like flowering, seed development, senescence, carbon metabolism, response to biotic and abiotic stresses, signaling, and root development. While new functions have been assigned to PAPs, the underlying mechanisms remained understood poorly. Here, we review the known functions of PAPs, the regulatory mechanisms, and their relevance in crop improvement for P-use-efficiency. We then discuss the mechanisms behind their functions and propose areas worthy of future research. Finally, we argue that PAPs could be a potential target for improving P utilization in crops. In turn, this is essential for sustainable agriculture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-021-02773-7 | DOI Listing |
BMC Plant Biol
January 2025
College of Animal Science and Technology, Southwest University, Chongqing, China.
Background: Submergence stress is a prevalent abiotic stress affecting plant growth and development and can restrict plant cultivation in areas prone to flooding. Research on plant submergence stress tolerance has been essential in managing plant production under excessive rainfall. Red clover (Trifolium pratense L.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China. Electronic address:
Purple rice (Oryza sativa L.) is a rich in endogenous phenolics and proteins. The naturally occurring interactions between phenolic compounds and proteins have been shown to have beneficial effects on human health.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
College of Agronomy and Biotechnology, Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, China.
Background: Yellow nutsedge (Cyperus esculentus, known as 'YouShaDou' in China, YSD) and purple nutsedge (Cyperus rotundus, known as 'XiangFuZi' in China, XFZ), closely related Cyperaceae species, exhibit significant differences in triacylglycerol (TAG) accumulation within their tubers, a key factor in carbon flux repartitioning that highly impact the total lipid, carbohydrate and protein metabolisms. Previous studies have attempted to elucidate the carbon anabolic discrepancies between these two species, however, a lack of comprehensive genome-wide annotation has hindered a detailed understanding of the underlying molecular mechanisms.
Results: This study utilizes transcriptomic analyses, supported by a comprehensive YSD reference genome, and metabolomic profiling to uncover the mechanisms underlying the major carbon perturbations between the developing tubers of YSD and XFZ germplasms harvested in Yunnan province, China, where the plant biodiveristy is renowned worldwide and may contain more genetic variations relative to their counterparts in other places.
Biosci Biotechnol Biochem
December 2024
Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan.
Purple yam (Dioscorea alata L.) is a tuber widely distributed in the tropics and subtropics. We previously isolated several acylated anthocyanins from purple yam.
View Article and Find Full Text PDFAnal Chem
December 2024
NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
A simple, rapid, and visual approach is developed to perform diagnosis of urinary tract infection (UTI) and antimicrobial susceptibility testing (AST) by employing smart bifunctional DNA (bfDNA) sensors, exonuclease III, concatermers of CuO nanoparticles (CuONPs), and gold NPs (AuNPs) aggregation [AuNPs agglutination (AA)], namely, the bfDEC-AA method. The bfDNA sensors serve as probes for identifying 16S rRNA genes of bacterium or 18S rRNA of fungus and as mediators connecting the concatermers of CuONPs. The AA as a signal source is triggered by Cu(I)-catalyzed azide-alkyne cycloaddition click chemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!