MutS is a key component of the mismatch repair (MMR) pathway. Members of the MutS protein family are present in prokaryotes, eukaryotes, and viruses. Six MutS homologs (MSH1-6) have been identified in yeast, of which three function in nuclear MMR, while MSH1 functions in mitochondrial DNA repair. MSH proteins are believed to be well conserved in animals, except for MSH1-which is thought to be lost. Two intriguing exceptions to this general picture have been found, both in the class Anthozoa within the phylum Cnidaria. First, an ortholog of the yeast-MSH1 was reported in one hexacoral species. Second, a MutS homolog (mtMutS) has been found in the mitochondrial genome of all octocorals. To understand the origin and potential functional implications of these exceptions, we investigated the evolution of the MutS family both in Cnidaria and in animals in general. Our study confirmed the acquisition of octocoral mtMutS by horizontal gene transfer from a giant virus. Surprisingly, we identified MSH1 in all hexacorals and several sponges and placozoans. By contrast, MSH1 orthologs were lacking in other cnidarians, ctenophores, and bilaterian animals. Furthermore, while we identified MSH2 and MSH6 in nearly all animals, MSH4, MSH5, and, especially, MSH3 were missing in multiple species. Overall, our analysis revealed a dynamic evolution of the MutS family in animals, with multiple losses of MSH1, MSH3, some losses of MSH4 and MSH5, and a gain of the octocoral mtMutS. We propose that octocoral mtMutS functionally replaced MSH1 that was present in the common ancestor of Anthozoa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8438181 | PMC |
http://dx.doi.org/10.1093/gbe/evab191 | DOI Listing |
Plant mitochondrial and plastid genomes have exceptionally slow rates of sequence evolution, and recent work has identified an unusual member of the gene family ("plant ") as being instrumental in preventing point mutations in these genomes. However, the eXects of disrupting -mediated DNA repair on "germline" mutation rates have not been quantified. Here, we used mutation accumulation (MA) lines to measure mutation rates in mutants and matched wild type (WT) controls.
View Article and Find Full Text PDFMol Genet Genomic Med
January 2025
Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
Background: Lynch syndrome (LS) is an autosomal-dominant disorder that increases the risk of many cancers. To identify novel or rare pathogenic variants of MMR genes associated with LS, especially in Chinese pedigrees.
Methods: One four-generation Chinese Han family from northeast China with 29 members was enrolled.
DNA Repair (Amst)
January 2025
Agriculture and Marine Science Program, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan; Agricultural Science, Graduate School of Integrated Arts and Science, Kochi University, Nankoku, Kochi 783-8502, Japan. Electronic address:
Most giant viruses including Mimiviridae family build large viral factories within the host cytoplasms. These giant viruses are presumed to possess specific genes that enable the rapid and massive replication of their large double-stranded DNA genomes within viral factories. It has been revealed that a functionally uncharacterized protein, MutS7, is expressed during the operational phase of the viral factory.
View Article and Find Full Text PDFPlant Cell
December 2024
Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Gto, México.
The widely distributed MutS gene family functions in recombination, DNA repair, and protein translation. Multiple evolutionary processes have expanded this gene family in plants relative to other eukaryotes. Here, we investigate the origins and functions of these plant-specific genes.
View Article and Find Full Text PDFJ Exp Med
January 2025
Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA.
Despite the established use of immune checkpoint inhibitors (ICIs) to treat non-small cell lung cancer (NSCLC), only a subset of patients benefit from treatment and ∼50% of patients whose tumors respond eventually develop acquired resistance (AR). To identify novel drivers of AR, we generated murine Msh2 knock-out (KO) lung tumors that initially responded but eventually developed AR to anti-PD-1, alone or in combination with anti-CTLA-4. Resistant tumors harbored decreased infiltrating T cells and reduced cancer cell-intrinsic MHC-I and MHC-II levels, yet remained responsive to IFNγ.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!