Purpose: The threat of population exposure to ionizing radiation is increasing rapidly worldwide. Such exposure, especially at high-dose, is known to cause acute radiation syndrome (ARS). Hence, it is necessary to develop specific and sensitive biomarkers to accurately diagnose radiation injury and evaluate medical countermeasures.
Materials And Methods: (), a model organism with a fine and sound olfactory system, was used to examine the odor of urine samples collected from irradiation-injured rats, and compared with those from un-irradiated control rats to investigate the 'special odor' of radiation injury. Subsequently, headspace SPME-GC-MS was applied for non-targeted metabolomic analysis of volatile organic compounds (VOCs) in urine, with the aim to discover changes of small molecule metabolites and identify odor biomarkers of irradiation injury.
Results: showed significant attraction to the urine of total body irradiation (TBI) rats compared with control rats, indicating that irradiation injury can emit 'special odor' and the metabolites in urine VOCs were changed. Using metabolomics based on headspace SPME-GC-MS for metabolic profiles analysis, we screened 63 differentially expressed metabolites. Among them, 10 metabolites including p-Cresol with excellent diagnostic ability were identified as odor biomarkers according to receiver operating characteristic (ROC) curve analysis.
Conclusions: This study confirmed the 'special odor' induced by irradiation injury, and identified biomarkers through urine VOCs analysis for the first time, which can provide a novel approach and insight to evaluate irradiation injury noninvasively, accurately and conveniently.[Figure: see text].
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09553002.2021.1969050 | DOI Listing |
Life Med
December 2024
Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, The Third People's Hospital of Deqing, Department of Cardiology, Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
Oxidative stress diminishes the functionality of hematopoietic stem cells (HSCs) as age advances, with heightened reactive oxygen species (ROS) levels exacerbating DNA damage, cellular senescence, and hematopoietic impairment. DDO1002, a potent inhibitor of the NRF2-KEAP1 pathway, modulates the expression of antioxidant genes. Yet, the extent to which it mitigates hematopoietic decline post-total body irradiation (TBI) or in the context of aging remains to be elucidated.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
Delayed radiation-induced brain injury (RIBI) characterized by progressive cognitive decline significantly impacts patient outcomes after radiotherapy. The activation of NLRP3 inflammasome within microglia after brain radiation is involved in the progression of RIBI by mediating inflammatory responses. We have previously shown that sulfonylurea receptor 1-transient receptor potential M4 (SUR1-TRPM4) mediates microglial NLRP3-related inflammation following global brain ischemia.
View Article and Find Full Text PDFCarbon fibre reinforced polyetheretherketone (CFR-PEEK) implants have gained interest because of reported biomechanical advantages and radio-lucent properties. The aim of this study was to evaluate the role of CFR-PEEK nails in patients with metastatic bone disease (MBD). We performed a retrospective cohort study evaluating patients with MBD undergoing intramedullary (IM) nailing for prophylaxis or fixation of pathological fractures using CFR- PEEK or titanium implants.
View Article and Find Full Text PDFbioRxiv
January 2025
Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of Medicine, University of Iowa.
Background: Radiation therapy (RT) treats primary and metastatic brain tumors, with about one million Americans surviving beyond six months post-treatment. However, up to 90% of survivors experience RT-induced cognitive impairment. Emerging evidence links cognitive decline to RT-induced endothelial dysfunction in brain microvessels, yet studies of endothelial injury remain limited.
View Article and Find Full Text PDFEndocrine
January 2025
Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, Florence, Italy.
Purpose: To compare functional deficits associated to surgery with those caused by the growth of the head and neck paragangliomas (HNPGLs).
Methods: 72 patients with HNPGLs were included. Patients were divided in group A (49 patients undergoing surgery) and group B (23 patients following a wait and see approach).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!