As a promising technique to potentially address the energy crisis and environmental issues, photocatalysis has been reported widely to exhibit various outstanding behaviors in production of new fuels/chemicals and treatment of contaminants. The photocatalytic performance is extremely dependent on the used photocatalysts, so that the design and preparation of efficient photocatalysts are critically important for significantly improving the photocatalytic activity. Among various strategies, the hybridization of metal with semiconductors has recently been attracting more and more research interest owing to their expended spectral absorption, promoted transferring rate of charge carriers and Plasmon-enhanced effect. In this minireview, the metal-facilitated hybrid photocatalysts are overviewed comprehensively to first reveal unique functions of metals in improvement of photoactivity and summarize the emerging metal-involved hybrid systems. Subsequently, the synthetic methods towards hybrid photocatalysts are introduced and their practical applications are emphasized in environmental remediation including degradation of organic pollutants, conversion of harmful gases, treatment of heavy metal ions and sterilization of bacteria. At the end, the challenges for industrializing these hybrid photocatalysts are discussed carefully and future development is suggested rationally.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/asia.202100762 | DOI Listing |
RSC Adv
January 2025
LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto Rua Dr Roberto Frias 4200-465 Porto Portugal
Additive Manufacturing (AM) was evaluated as a promising technology for constructing photocatalytic reactors due to its inherent ability to produce complex geometries with high precision and customization. In this work, a 3D structure was designed to achieve a good light distribution inside a cylindrical batch reactor and printed using the stereolithography (SLA) technique. A hybrid material composed of a commercial photoreactive resin (Formlabs Clear V4) and the benchmark photocatalyst TiO P25 Evonik (1 wt%) was prepared and characterized by scanning electron microscopy (SEM) and rheological and mechanical methods.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Departamento de Química Orgánica, Universidad de Zaragoza, 50009 Zaragoza, Spain.
Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, PR China.
The H-evolution kinetics play a pivotal role in governing the photocatalytic hydrogen-evolution process. However, achieving precise regulation of the H-adsorption and H-desorption equilibrium (H/H) still remains a great challenge. Herein, we propose a fine-tuning d-p hybridization strategy to precisely optimize the H/H kinetics in a Ni-B modified CdS photocatalyst (Ni-B/CdS).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Chemistry and Chemical Engineering, Hubei Key Laboratory of Biomass Fibers and Ecodyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China. Electronic address:
Rapid charge recombination, limited light response, and slow surface reactions were observed in the photocatalysts, thereby limiting their future-oriented applications in photocatalytic hydrogen production through water splitting. Constructing a multi-channel charge separation photocatalysis system could solve those questions. In this study, Pd-TiO-CuO composites were successfully accomplished via a facile chemical reduction method.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Analysis and Testing Center, Xinyang University, Xinyang 464000 China. Electronic address:
A significant enhancement in the photocatalytic activity of metal-organic frameworks (MOFs) is achieved by expanding the visible-light response range through the strategic incorporation of functional groups, such as metalloporphyrins. Herein, Pd-metalised tetrakis(4-carboxyphenyl)porphyrin (PdTCPP) photosensitiser is integrated into the UiO-66-(NH) framework, creating the hybrid material PdTCPP ⊂ UiO-66-(NH) using a facile mixed-ligand strategy. Platinum nanoparticles (Pt NPs) are subsequently introduced as a co-catalyst via in situ photoreduction, resulting in the formation of the Pt/PdTCPP ⊂ UiO-66-(NH) hybrid material, which demonstrates exceptional catalytic performance under visible-light irradiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!