Designing and modulating the local structure of metal sites is the key to gain the unique selectivity and high activity of single metal site catalysts. Herein, we report strain engineering of curved single atomic iron-nitrogen sites to boost electrocatalytic activity. First, a helical carbon structure with abundant high-curvature surface is realized by carbonization of helical polypyrrole that is templated from self-assembled chiral surfactants. The high-curvature surface introduces compressive strain on the supported Fe-N sites. Consequently, the curved Fe-N sites with 1.5 % compressed Fe-N bonds exhibit downshifted d-band center than the planar sites. Such a change can weaken the bonding strength between the oxygenated intermediates and metal sites, resulting a much smaller energy barrier for oxygen reduction. Catalytic tests further demonstrate that a kinetic current density of 7.922 mA cm at 0.9 V vs. RHE is obtained in alkaline media for curved Fe-N sites, which is 31 times higher than that for planar ones. Our findings shed light on modulating the local three-dimensional structure of single metal sites and boosting the catalytic activity via strain engineering.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202109058 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Science and Technology of China, National Synchrotron Radiation Laboratory, 42#, South Road of HeZuoHua, 230029, Hefei, CHINA.
Fe-N-C catalysts, with a planar D4h symmetric FeN4 structure, show promising as noble metal-free oxygen reduction reaction catalysts. Nonetheless, the highly symmetric structure restricts the effective manipulation of its geometric and electronic structures, impeding further enhancements in oxygen reduction reaction performance. Here, a high proportion of asymmetric edge-carbon was successfully introduced into Fe-N-C catalysts through morphology engineering, enabling the precise modulation of the FeN4 active site.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
City University of Hong Kong, Department of Chemistry, 83 Tat Chee Avenue, Hong Kong, HONG KONG.
Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs.
View Article and Find Full Text PDFJ Fluoresc
January 2025
College of Life Science, Northwest University, Xian, 710069, Shaanxi, China.
Lead (Pb) ions give an imminent danger since they have been known to cause persistent damage to humans, plants, and animals, even at low concentrations, and cysteine (Cys) elevated levels are critical indicators for many diseases. Therefore, their detection is critical in pharmaceutical and environmental samples. This study tailored an innovative fluorescence switch off-on assay to detect Pb and Cys based on the amplification of G-quadruplex (G-4) to N-methylmesoporphyrin IX (NMM).
View Article and Find Full Text PDFPLoS One
January 2025
Department of Anthropology, University of Akron, Akron, Ohio, United States of America.
In the Iron Age, the Neo-Assyrian empire (c. 900-600 BC) conquered territory across southwest Asia and established regional capitals along its borders to secure its gains. Governors at these centers oversaw resource extraction and craft production for shipment to the imperial heartland in modern-day northern Iraq.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Arama-ki-Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
A new approach for hydrogen isotope separation using an unsaturated organometallic complex was proposed. Adsorption measurements of [Mn(dppe)(CO)(N)](BArF) (Mn-dppe) (dppe = 1,2-bis(diphenylphosphino)ethane, BArF = B[CH(3,5-CF)]) using H and D revealed a significant difference in the adsorption enthalpy of H/D at much higher room temperatures than in previous studies, with D molecules being more strongly adsorbed on unsaturated metal sites. Mixed gas adsorption isotherms were calculated at each temperature using IAST, and it was predicted that D uptake was much larger than H uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!