Glycated hemoglobin (HbA1c) is one of the most popular biomarkers which can be utilized for the diagnosis and control of diabetes in clinical practice. In this study, a sandwich paper-based electrochemiluminescence (ECL) biosensor has been developed using the zirconium metal-organic framework/FeO(trimethyl chitosan)/gold nanocluster (Zr-MOF/FeO(TMC)/AuNCs) nanocomposite as tracing tag to label anti-HbA1c monoclonal antibody and reduced graphene oxide (rGO) as immobilization platform of sensing element. The screen-printed electrodes (SPEs) were constructed and modified by sputtering a thick layer of gold on the paper substrate, followed by electrochemical reduction of aminophenylboronic acid (APBA)-functionalized GO to rGO/APBA, respectively. Different types of surface analysis methods were applied to characterize the Zr-MOF/FeO(TMC)/AuNCs nanomaterials fabricated. Finally, antibody-labeled Zr-MOF/FeO(TMC)/AuNCs nanocomposites were subjected to HbA1c in the sample and on the paper-based SPE. Quantitative measurement of HbA1c was performed using ECL and cyclic voltammetry (CV) over a potential range of - 0.2 to 1.7 V vs gold reference electrode with a sweep rate of 0.2 V.s in the presence of triethylamine as a co-reactant after sandwiching the HbA1c target between antibody and APBA on the sensing area. This immunosensor demonstrated the desirable assay performance for HbA1c with a wide response range from 2 to 18% and a low detection limit (0.072%). This new strategy provides an effective method for high-performance bioanalysis and opens avenues for the development of high-sensitive and user-friendly device. Graphical abstract.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-021-04959-yDOI Listing

Publication Analysis

Top Keywords

zirconium metal-organic
8
hba1c
6
electrochemiluminescence paper-based
4
paper-based screen-printed
4
screen-printed electrode
4
electrode hba1c
4
hba1c detection
4
detection two-dimensional
4
two-dimensional zirconium
4
metal-organic framework/feo
4

Similar Publications

Selective gold extraction from e-waste leachate via sulfur-redox mechanisms using sulfhydryl-functionalized MOFs.

Water Res

January 2025

State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China. Electronic address:

Urban mining of precious metals from electronic waste (e-waste) offers a dual advantage by addressing solid waste management challenges and supplying high-value metals for diverse applications. However, traditional extraction methods generally suffer from poor selectivity and limited capacity in complex acidic leachate. Herein, we present a sulfhydryl-functionalized zirconium-based metal-organic framework (Zr-MSA-AA) as a recyclable and highly selective adsorbent for efficient gold recovery.

View Article and Find Full Text PDF

A wide range of mesoporous Zr and Hf metal-organic frameworks (MOFs), namely MIP-206, MOF-808, and NU-1000, as well as the microporous UiO-66, were systematically investigated and compared in terms of thermal and chemical stability. The holistic effects of metal type (Zr Hf), linker type (small and rigid large and flexible), and framework topology (2D 3D) on the overall framework stability were investigated.

View Article and Find Full Text PDF

Enriching the structural diversity of metal-organic frameworks (MOFs) is of great importance in developing functional porous materials with specific properties. New MOF structures can be accessed through the rational design of organic linkers with diverse geometric conformations, and their structural complexity can be enhanced by choosing linkers with reduced symmetry. Herein, a series of Zr-based MOFs with unprecedented topologies were developed through a linker desymmetrization and conformation engineering approach.

View Article and Find Full Text PDF

Organophosphorus pesticides (OPs) pose significant environmental and health risks, and their detoxification through catalytic hydrolysis using zirconium-based metal-organic frameworks (Zr-MOFs) has attracted considerable interest due to the strong Lewis acid metal ions. Albeit important, the defects of the materials for OP hydrolysis (e.g.

View Article and Find Full Text PDF

An Adsorbent for Efficient and Rapid Gold Recovery from Solution: Adsorption Properties and Mechanisms.

Langmuir

January 2025

College of Optoelectronic Materials and Technology, Jianghan University, Wuhan, Hubei 430056, People's Republic of China.

Adsorption is an efficient and highly selective method for gold recovery. Introducing rich N/S organic groups to combine with metal-organic frameworks (MOFs) as adsorbents is regarded as a practical and efficient approach to enhance gold recovery. Herein, a MOF (zirconium isothiocyanatobenzenedicarboxylate MOF, UiO-66-NCS) was designed to combine with amidinothiourea (AT) to form UiO-66-AT (zirconium amidothiourea-benzenedicarboxylate MOF) for efficient and rapid adsorption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!