Machine learning analysis of non-marital sexual violence in India.

EClinicalMedicine

Center on Gender Equity and Health, Department of Medicine, University of California San Diego, San Diego, CA, USA.

Published: September 2021

Background: Machine learning techniques can explore low prevalence data to offer insight into identification of factors associated with non-marital sexual violence (NMSV). NMSV in India is a health and human rights concern that disproportionately affects adolescents, is under-reported, and not well understood or addressed in the country.

Methods: We applied machine learning methods to retrospective cross-sectional data from India's nationally-representative National Family Health Survey 4, a demographic and health study conducted in 2015-16, which offers 4000+ variables as potential independent variables. We used Least Absolute Shrinkage and Selection Operator (lasso) or L-1 regularized logistic regression models as well as L-2 regularized logistic regression or ridge models; we conducted an iterative thematic analysis (ITA) of variables generated from a series of regularized models.

Findings: Thematic analysis of regularized models highlight that past exposure to violence was most predictive of NMSV, followed by geography, sexual behavior, and poor sexual and reproductive health knowledge. After these, indicators largely related to resources and autonomy (e.g., access to health services, and income generating) were associated with NMSV. Exploratory analysis with the subsample of never married adolescents 15-19 years old, a population with higher representation of recent NMSV, further emphasized the role of wealth and mobility as key correlates of NMSV, along with poor HIV knowledge, tobacco use, higher fertility preferences, and attitudes accepting of marital violence.

Interpretation: Findings indicate the validity of machine learning with iterative theme analysis (ITA) to identify factors associated with violence. Findings were consistent with prior work demonstrating associations between NMSV and other violence experiences, but also showed novel correlates such as lower SRH knowledge and service utilization and, for girls, norms and preferences suggesting more restrictive gender norms. Sexual and reproductive health, gender equity and safety focused interventions are important for addressing NMSV in India, particularly for adolescents.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350001PMC
http://dx.doi.org/10.1016/j.eclinm.2021.101046DOI Listing

Publication Analysis

Top Keywords

machine learning
16
non-marital sexual
8
sexual violence
8
factors associated
8
nmsv
8
nmsv india
8
regularized logistic
8
logistic regression
8
thematic analysis
8
analysis ita
8

Similar Publications

Prenatal stress has a well-established link to negative biobehavioral outcomes in young children, particularly for girls, but the specific timing during gestation of these associations remains unknown. In the current study, we examined differential effects of timing of prenatal stress on two infant biobehavioral outcomes [i.e.

View Article and Find Full Text PDF

The rise in popularity of two-photon polymerization (TPP) as an additive manufacturing technique has impacted many areas of science and engineering, particularly those related to biomedical applications. Compared with other fabrication methods used for biomedical applications, TPP offers 3D, nanometer-scale fabrication dexterity (free-form). Moreover, the existence of turnkey commercial systems has increased accessibility.

View Article and Find Full Text PDF

Designer Organs: Ethical Genetic Modifications in the Era of Machine Perfusion.

Annu Rev Biomed Eng

January 2025

1Center for Engineering for Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA;

Gene therapy is a rapidly developing field, finally yielding clinical benefits. Genetic engineering of organs for transplantation may soon be an option, thanks to convergence with another breakthrough technology, ex vivo machine perfusion (EVMP). EVMP allows access to the functioning organ for genetic manipulation prior to transplant.

View Article and Find Full Text PDF

Background: Skin cancers, including melanoma and keratinocyte cancers, are among the most common cancers worldwide, and their incidence is rising in most populations. Earlier detection of skin cancer leads to better outcomes for patients. Artificial intelligence (AI) technologies have been applied to skin cancer diagnosis, but many technologies lack clinical evidence and/or the appropriate regulatory approvals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!