Inorganic halide perovskites have emerged as a promising platform in a wide range of applications from solar energy harvesting to computing and light emission. The recent advent of epitaxial thin film growth of halide perovskites has made it possible to investigate low-dimensional quantum electronic devices based on this class of materials. This study leverages advances in vapor-phase epitaxy of halide perovskites to perform low-temperature magnetotransport measurements on single-domain cesium tin iodide (CsSnI) epitaxial thin films. The low-field magnetoresistance carries signatures of coherent quantum interference effects and spin-orbit coupling. These weak anti-localization measurements reveal a micron-scale low-temperature phase coherence length for charge carriers in this system. The results indicate that epitaxial halide perovskite heterostructures are a promising platform for investigating long coherent quantum electronic effects and potential applications in spintronics and spin-orbitronics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8358163PMC
http://dx.doi.org/10.1016/j.isci.2021.102912DOI Listing

Publication Analysis

Top Keywords

halide perovskites
16
phase coherence
8
coherence length
8
epitaxial halide
8
promising platform
8
epitaxial thin
8
quantum electronic
8
coherent quantum
8
halide
5
extraordinary phase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!