A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Volumetric modulated arc therapy dose prediction and deliverable treatment plan generation for prostate cancer patients using a densely connected deep learning model. | LitMetric

Background And Purpose: Radiation therapy treatment planning is a manual, time-consuming task that might be accelerated using machine learning algorithms. In this study, we aimed to evaluate if a triplet-based deep learning model can predict volumetric modulated arc therapy (VMAT) dose distributions for prostate cancer patients.

Materials And Methods: A modified U-Net was trained on triplets, a combination of three consecutive image slices and corresponding segmentations, from 160 patients, and compared to a baseline U-Net. Dose predictions from 17 test patients were transformed into deliverable treatment plans using a novel planning workflow.

Results: The model achieved a mean absolute dose error of 1.3%, 1.9%, 1.0% and ≤ 2.6% for clinical target volume (CTV) CTV_D, planning target volume (PTV) PTV_D, PTVD and organs at risk (OAR) respectively, when compared to the clinical ground truth (GT) dose distributions. All predicted distributions were successfully transformed into deliverable treatment plans and tested on a phantom, resulting in a passing rate of 100% (global gamma, 3%, 2 mm, 15% cutoff). The dose difference between deliverable treatment plans and GT dose distributions was within 4.4%. The difference between the baseline model and our improved model was statistically significant (p < 0.05) for CVT_D, PTV_D and PTV_D.

Conclusion: Triplet-based training improved VMAT dose distribution predictions when compared to 2D. Dose predictions were successfully transformed into deliverable treatment plans using our proposed treatment planning procedure. Our method may automate parts of the workflow for external beam prostate radiation therapy and improve the overall treatment speed and plan quality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353474PMC
http://dx.doi.org/10.1016/j.phro.2021.07.008DOI Listing

Publication Analysis

Top Keywords

deliverable treatment
16
dose distributions
12
treatment plans
12
volumetric modulated
8
modulated arc
8
arc therapy
8
prostate cancer
8
deep learning
8
learning model
8
transformed deliverable
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!