Cloud computing is one of the evolving fields of technology, which allows storage, access of data, programs, and their execution over the internet with offering a variety of information related services. With cloud information services, it is essential for information to be saved securely and to be distributed safely across numerous users. Cloud information storage has suffered from issues related to information integrity, data security, and information access by unauthenticated users. The distribution and storage of data among several users are highly scalable and cost-efficient but results in data redundancy and security issues. In this article, a biometric authentication scheme is proposed for the requested users to give access permission in a cloud-distributed environment and, at the same time, alleviate data redundancy. To achieve this, a cryptographic technique is used by service providers to generate the bio-key for authentication, which will be accessible only to authenticated users. A Gabor filter with distributed security and encryption using XOR operations is used to generate the proposed bio-key (biometric generated key) and avoid data deduplication in the cloud, ensuring avoidance of data redundancy and security. The proposed method is compared with existing algorithms, such as convergent encryption (CE), leakage resilient (LR), randomized convergent encryption (RCE), secure de-duplication scheme (SDS), to evaluate the de-duplication performance. Our comparative analysis shows that our proposed scheme results in smaller computation and communication costs than existing schemes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8330427PMC
http://dx.doi.org/10.7717/peerj-cs.569DOI Listing

Publication Analysis

Top Keywords

data redundancy
12
biometric authentication
8
cloud storage
8
redundancy security
8
convergent encryption
8
data
7
cloud
5
users
5
secure biometric
4
authentication de-duplication
4

Similar Publications

Disentangled Active Learning on Graphs.

Neural Netw

January 2025

Key Laboratory of Embedded System and Service Computing, Ministry of Education, Tongji University, Shanghai 201804, China; National (Province-Ministry Joint) Collaborative Innovation Center for Financial Network Security, Tongji University, Shanghai 201804, China.

Active learning on graphs (ALG) has emerged as a compelling research field due to its capacity to address the challenge of label scarcity. Existing ALG methods incorporate diversity into their query strategies to maximize the gains from node sampling, improving robustness and reducing redundancy in graph learning. However, they often overlook the complex entanglement of latent factors inherent in graph-structured data.

View Article and Find Full Text PDF

Fatigue driving is one of the potential factors threatening road safety, and monitoring drivers' mental state through electroencephalography (EEG) can effectively prevent such risks. In this paper, a new model, DE-GFRJMCMC, is proposed for selecting critical channels and optimal feature subsets from EEG data to improve the accuracy of fatigue driving recognition. The model is validated on the SEED-VIG dataset.

View Article and Find Full Text PDF

: With the rapid development of the accumulation of large-scale multiomics data sets, integrating various omics data to provide a thorough study from multiple perspectives can significantly provide stronger support for precise treatment of diseases. However, due to the complexity of multiomics data, issues of feature redundancy and noise often do not receive sufficient attention when processing high-dimensional data. Moreover, simple concatenation strategies may overlook the correlations between different omics data, failing to effectively capture the unique information inherent in multiomics data.

View Article and Find Full Text PDF

A novel adaptive lightweight multimodal efficient feature inference network ALME-FIN for EEG emotion recognition.

Cogn Neurodyn

December 2025

School of Mechatronical Engineering, Beijing Institute of Technology, No. 5 Zhongguancun South Street, Haidian District, Beijing, 100081 China.

Enhancing the accuracy of emotion recognition models through multimodal learning is a common approach. However, challenges such as insufficient modal feature learning in multimodal inference and scarcity of sample data continue to pose obstacles that need to be overcome. Therefore, we propose a novel adaptive lightweight multimodal efficient feature inference network (ALME-FIN).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!