Although the availability of the measles vaccine, it is still epidemic in many countries globally, including Bangladesh. Eradication of measles needs to keep the basic reproduction number less than one [Formula: see text]. This paper investigates a modified (SVEIR) measles compartmental model with double dose vaccination in Bangladesh to simulate the measles prevalence. We perform a dynamical analysis of the resulting system and find that the model contains two equilibrium points: a disease-free equilibrium and an endemic equilibrium. The disease will be died out if the basic reproduction number is less than one [Formula: see text], and if greater than one [Formula: see text] epidemic occurs. While using the Routh-Hurwitz criteria, the equilibria are found to be locally asymptotically stable under the former condition on [Formula: see text]. The partial rank correlation coefficients (PRCCs), a global sensitivity analysis method is used to compute [Formula: see text] and measles prevalence [Formula: see text] with respect to the estimated and fitted model parameters. We found that the transmission rate [Formula: see text] had the most significant influence on measles prevalence. Numerical simulations were carried out to commissions our analytical outcomes. These findings show that how progression rate, transmission rate and double dose vaccination rate affect the dynamics of measles prevalence. The information that we generate from this study may help government and public health professionals in making strategies to deal with the omissions of a measles outbreak and thus control and prevent an epidemic in Bangladesh.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8368032PMC
http://dx.doi.org/10.1038/s41598-021-95913-8DOI Listing

Publication Analysis

Top Keywords

[formula text]
28
measles prevalence
16
double dose
12
dose vaccination
12
measles
9
basic reproduction
8
reproduction number
8
number [formula
8
transmission rate
8
[formula
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!