The cancer-immune dialogue subject to immuno-oncological intervention is profoundly influenced by microenvironmental factors. Indeed, the mucosal microbiota-and more specifically, the intestinal ecosystem-influences the tone of anticancer immune responses and the clinical benefit of immunotherapy. Antibiotics blunt the efficacy of immune checkpoint inhibitors (ICI), and fecal microbial transplantation may restore responsiveness of ICI-resistant melanoma. Here, we review the yin and yang of intestinal bacteria at the crossroads between the intestinal barrier, metabolism, and local or systemic immune responses during anticancer therapies. We discuss diagnostic tools to identify gut dysbiosis and the future prospects of microbiota-based therapeutic interventions. SIGNIFICANCE: Given the recent proof of concept of the potential efficacy of fecal microbial transplantation in patients with melanoma primarily resistant to PD-1 blockade, it is timely to discuss how and why antibiotics compromise the efficacy of cancer immunotherapy, describe the balance between beneficial and harmful microbial species in play during therapies, and introduce the potential for microbiota-centered interventions for the future of immuno-oncology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/2159-8290.CD-21-0236 | DOI Listing |
Nutrients
December 2024
Department of Science Education, Ewha Womans University, Seoul 03760, Republic of Korea.
This review investigates the therapeutic potential of butyrate, a short-chain fatty acid (SCFA) produced by gut microbiota, in the prevention and treatment of various gynecological diseases, including polycystic ovary syndrome (PCOS), endometriosis, and gynecologic cancers like cervical and ovarian cancer. These conditions often pose treatment challenges, with conventional therapies offering limited and temporary relief, significant side effects, and a risk of recurrence. Emerging evidence highlights butyrate's unique biological activities, particularly its role as a histone deacetylase (HDAC) inhibitor, which allows it to modulate gene expression, immune responses, and inflammation.
View Article and Find Full Text PDFClin Liver Dis
November 2024
Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA 92161, USA. Electronic address:
Alcohol-associated liver disease (ALD) poses a significant global public health challenge, with high patient mortality rates and economic burden. The gut microbiome plays an important role in the onset and progression of alcohol-associated liver disease. Excessive alcohol consumption disrupts the intestinal barrier, facilitating the entry of harmful microbes and their products into the liver, exacerbating liver damage.
View Article and Find Full Text PDFAnnu Rev Pharmacol Toxicol
January 2025
Center of Clinical Investigations BIOTHERIS, INSERM CIC1428, Villejuif, France.
Cell
June 2024
Gustave Roussy Cancer Campus, ClinicObiome, Villejuif, France; Université Paris-Saclay, Ile-de-France, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1015, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS) 1428, Villejuif, France. Electronic address:
J Cancer Immunol (Wilmington)
January 2024
Section of Urologic Oncology, Rutgers Cancer Institute of New Jersey and Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.
Introduction & Objective: The role of the microbiome in the development and treatment of genitourinary malignancies is just starting to be appreciated. Accumulating evidence suggests that the microbiome can modulate immunotherapy through signaling in the highly dynamic tumor microenvironment. Nevertheless, much is still unknown about the immuno-oncology-microbiome axis, especially in urologic oncology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!