Objectives: This study evaluated the in vitro effect of different components of palm oil on enamel in a short-term erosive challenge.
Methods: The acquired enamel pellicle (AEP) was previously formed in situ for 2 h. Subsequently, the bovine enamel blocks were treated in vitro according to following solutions: G1-palm oil; G2-85% tocotrienol solution; G3-oily vitamin E; G4-oily vitamin A; G5-deionized water (negative control); G6-stannous-containing solution (Elmex® Erosion Protection Dental Rinse) (positive control). After application of the treatment solutions (500 µl, 30 s), the blocks were immersed in 0.5% citric acid (pH 2.4) during 30 s (initial erosion). The response variable was the percentage of surface hardness loss. Data were analyzed by one-way ANOVA and Fisher's Test (p < 0.05).
Results: The positive control (G6), palm oil (G1) and oily vitamin E (G3) groups presented the lowest percentage of surface hardness loss, and were statistically different from the negative group (G5) (p < 0.05), and no differences were found between these three groups. The 85% tocotrienol solution (G2) and oily vitamin A groups (G4) were not different to the negative control group.
Conclusions: Stannous-containing positive control (Elmex® Erosion Protection), palm oil and oily Vitamin E were able to protect enamel against the erosive challenge performed in this in vitro study. In addition, vitamin E is probably the key ingredient of palm oil responsible for preventing enamel erosion.
Clinical Significance: Vitamin E presented similar preventive effect to a commercial mouthwash stannous-containing solution (Elmex® Erosion Protection) against initial erosion and, it can be considered as a promising natural alternative for the formulations of solutions aiming to prevent erosive tooth wear.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jdent.2021.103781 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!