Pituitary tumor-transforming gene 1 (PTTG1) has been found to be associated with the process of cell proliferation and invasion, and is highly expressed in aortic dissection (AD). However, its potential role and underlying mechanism in AD remain uncertain. This study aims at elucidating the roles of specificity protein 1 (SP1) and PTTG1 in the migration and phenotypic switching of aortic vascular smooth muscle cells (VSMCs) in AD. Aortic samples were collected from 35 patients with AD for examination of PTTG1 expression in the tissues by qPCR, western blot and immunofluorescence. Human aortic vascular smooth muscle cells (HAVSMCs) were stimulated with platelet-derived growth factor-BB (PDGF-BB) to establish the cellular model of AD. PTTG1 expression in VSMCs was also examined by qPCR and western blot. Cell viability was detected by CCK-8, cell proliferation by EdU staining and cell migration by wound healing and transwell. Western blot was then performed to assay migration-related proteins. After interference with PTTG1, the levels of smooth muscle pthenotypic switch markers smooth muscle protein 22 alpha (SM22-α) and osteopontin (OPN) were detected by qPCR, western blot and immunofluorescence. The binding of SP1 and PTTG1 was verified with dual-luciferase reporter assay and chromatin immunoprecipitation assay (ChIP). PTTG1 overexpression was found in AD patients. Interference with PTTG1 attenuated the proliferation and migration of PDGF-BB-stimulated HAVSMCs, in addition to their switching from contractile phenotype to synthetic phenotype. Transcription factor SP1 was up-regulated in PDGF-BB-stimulated HAVSMCs, combined with PTTG1 promoter sequence and regulated PTTG1 expression, whose overexpression reversed the effects of PTTG1 interference on cell proliferation, migration and phenotypic switching. SP1 transcriptional activation of PTTG1 activated MAPK/ERK signaling pathway. In conclusion, SP1 transcriptional activation of PTTG1 regulates the migration and phenotypic transformation of HAVSMCs in AD by MAPK Signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.abb.2021.109007DOI Listing

Publication Analysis

Top Keywords

smooth muscle
20
migration phenotypic
16
western blot
16
pttg1
14
transcriptional activation
12
activation pttg1
12
phenotypic switching
12
aortic vascular
12
vascular smooth
12
muscle cells
12

Similar Publications

Correcting mitochondrial loss mitigates NOTCH1-related aortopathy in mice.

Nat Cardiovasc Res

January 2025

Shanghai Fifth People's Hospital and Institutes of Biomedical Sciences Zhongshan Hospital, Shanghai Medical College, Fudan University, Shanghai, China.

Loss-of-function mutations in NOTCH1 were previously linked to thoracic aortopathy, a condition for which non-surgical treatment options are limited. Based on clinical proteome analysis, we hypothesized that mitochondrial fusion and biogenesis in aortic smooth muscle cells (SMCs) are crucial for regulating the progression of NOTCH1-related aortopathy. Here we demonstrate that SMC-specific Notch1 knockout mice develop aortic pathology, including stiffening, dilation and focal dissection.

View Article and Find Full Text PDF

Elevated phosphate levels in CKD - a direct threat for the heart.

Nephrol Dial Transplant

January 2025

Division of Nephrology and Section of Mineral Metabolism, Department of Medicine, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.

Elevations in systemic phosphate levels, also called hyperphosphatemia, occur in chronic kidney disease (CKD) and during the normal aging process and are associated with various pathologies, such as cardiovascular injury. Experimental studies suggest that at high serum concentrations, phosphate can induce osteogenic differentiation of vascular smooth muscle cells and contribute to vascular calcification. However, the precise underlying mechanism leading to cardiovascular injury is not well understood.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Introduction: Sildenafil, a selective phosphodiesterase 5 inhibitor, modulates vascular dysfunction, with hypoxia-induced pulmonary artery smooth muscle cells (PASMCs) proliferation, migration, and invasion closely implicated in vascular remodeling in persistent pulmonary hypertension of the newborn (PPHN). This study aimed to assess sildenafil's protective effects against PPHN and elucidate underlying molecular pathways.

Methods: Cell Counting Kit-8, wound healing, and Transwell assays evaluated rat PASMC proliferation, migration, and invasion under hypoxia.

View Article and Find Full Text PDF

Restenosis remains a long-standing limitation to effectively maintain functional blood flow after percutaneous transluminal angioplasty (PTA). While the use of drug-coated balloons (DCBs) containing antiproliferative drugs has improved patient outcomes, limited tissue transfer and poor therapeutic targeting capabilities contribute to off-target cytotoxicity, precluding adequate endothelial repair. In this work, a DCB system was designed and tested to achieve defined arterial delivery of an antirestenosis therapeutic candidate, cadherin-2 (N-cadherin) mimetic peptides (NCad), shown to selectively inhibit smooth muscle cell migration and limit intimal thickening in early animal PTA models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!